scala机器学习-保险预测-第一节

spark好久不用先熟悉一下sql的api

package com.wtx.job014

import org.apache.spark.sql.SparkSession

object demo2 {
  def main(args: Array[String]): Unit = {

    val train = "file:\\C:\\Users\\86183\\Desktop\\scala_machine_leraning_projects\\ScalaMachineLearningData\\train.csv"
    val test = "file:\\C:\\Users\\86183\\Desktop\\scala_machine_leraning_projects\\ScalaMachineLearningData\\test.csv"

    val spark: SparkSession = SparkSessionCreate.createSession()
    val trainInput = spark.read.option("header", "true").option("inferSchema", "true").format("com.databricks.spark.csv")
      .load(train).cache()
    print(trainInput.printSchema())
    print(trainInput.count)
    //      trainInput.show()
    //      trainInput.select("id", "cat1","cat2","cat3","cont1","cont2","cont3","loss").show()
    val newDF = trainInput.withColumnRenamed("loss", "label")
    //lable不替换的话,学习框架会报错,所以目标值一定要换名
    newDF.createOrReplaceTempView("insurance") //insurance 保险
    spark.sql("SELECT avg(insurance.label) as AVG_LOSS FROM insurance").show()
    spark.sql("SELECT min(insurance.label) as MIN_LOSS FROM insurance").show()
    spark.sql("SELECT max(insurance.label) as MAX_LOSS FROM insurance").show()

  }
}

数据预处理

package com.wtx.job014
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.feature.{ StringIndexer, StringIndexerModel }
import org.apache.spark.sql.SparkSession

object demo3 {
    val train = "file:\\C:\\Users\\86183\\Desktop\\scala_machine_leraning_projects\\ScalaMachineLearningData\\train.csv"
    val test = "file:\\C:\\Users\\86183\\Desktop\\scala_machine_leraning_projects\\ScalaMachineLearningData\\test.csv"
    var trainSample = 1.0
    var testSample = 1.0
    val spark: SparkSession = SparkSessionCreate.createSession()
    val trainInput = spark.read.option("header", "true").option("inferSchema", "true").format("com.databricks.spark.csv")
      .load(train).cache()
    val testInput = spark.read.option("header", "true").option("inferSchema", "true").format("com.databricks.spark.csv")
      .load(train).cache()

    var data = trainInput.withColumnRenamed("loss", "label").sample(false, trainSample)
    var DF = data.na.drop()
    if (data == DF) {
      print("不为空")
    } else {
      print("dataframe为空值 data的值	" + data + "   ____ df的值为:  " + DF)
      data = DF
    }
    val seed = 12345L
    val splits = data.randomSplit(Array(0.75, 0.25), seed)
    val (trainingData, validationData) = (splits(0), splits(1))
    //trainingData 训练集  validationData  验证集
    trainingData.cache()
    validationData.cache()
    val testData = testInput.sample(false, testSample).cache()
    //测试集采样
    //数据集准备好了训练,验证,测试三组数据,现在开始数据预处理

    def isCateg(c: String): Boolean = c.startsWith("cat")
    def categNewCol(c: String): String = if (isCateg(c)) s"idx_${c}" else c
    def removeTooManyCategs(c: String): Boolean = !(c matches "cat(109$|110$|112$|113$|116$)")
    def onlyFeatureCols(c: String): Boolean = !(c matches "id|label")
    //处理完不要的数据后构建所需要的数据的格式化数据
    val featureCols=trainingData.columns.filter(removeTooManyCategs).filter(onlyFeatureCols).map(categNewCol)
    val stringUbdexerStages=trainingData.columns.filter(isCateg).map(c=> new StringIndexer()
    .setInputCol(c)
    .setOutputCol(categNewCol(c))
    .fit(trainInput.select(c).union(testInput.select(c)))
    )
    val assembler = new VectorAssembler().setInputCols(featureCols).setOutputCol("features")
}

数据预处理,将两份csv数据清洗并将数据结构化
需要注意sbt配置依赖时,如果添加了新的依赖注意sbt严格的格式,还有powermap窗口中reload和compile之后一定要eclipse才能将mlib的库导入ide

sbt文件

ThisBuild / scalaVersion := "2.11.11"

ThisBuild / organization := "com.wtx.job014"

libraryDependencies ++= Seq(


  "org.apache.spark" %% "spark-sql" % "2.3.2" % "provided",

   "org.apache.spark" %% "spark-core" % "2.3.2" % "provided",

      "org.apache.spark" %% "spark-streaming" % "2.3.2" % "provided",
      
            "org.apache.spark" %% "spark-mllib" % "2.3.2" % "provided"
      
)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值