- 题目描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
提示:
- 0 <= word1.length, word2.length <= 500
- word1 和 word2 由小写英文字母组成
来源:LeetCode
- 示例
- 示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’) - 示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
- 思路分析
动态规划。定义 d p [ i ] [ j ] dp[i][j] dp[i][j]: w o r d 1 word1 word1的前 i i i个字符转换为 w o r d 2 word2 word2的前 j j j个字符所需的最少改变次数。则根据题意,如果 w o r d 1 [ i ] = = w o r d 2 [ j ] word1[i] == word2[j] word1[i]==word2[j],那么不需要额外的操作, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1] dp[i][j]=dp[i−1][j−1];如果 w o r d
该博客探讨了如何使用动态规划方法解决LeetCode上的#72 编辑距离问题,给出了从word1转换到word2的最少操作数。通过详细分析思路并展示JAVA代码实现,解释了动态规划的状态转移方程,并比较了两种初始化二维数组的方法,强调了其中一种方法的优势。
最低0.47元/天 解锁文章
291

被折叠的 条评论
为什么被折叠?



