用spark装载文件数据源以及使用spark sql操作数据

1、装载CSV数据源

文件预览
在这里插入图片描述
使用sparksession方法

 val conf = new SparkConf().setMaster("local[2]").setAppName("Demo")
val session = SparkSession.builder().config(conf).getOrCreate() //固定格式,写死的方法
    val df = session.read.format("csv").option("header", "true").
      load("D:\\360Downloads\\scala\\users.csv")
      //format后写文件格式,header写死,true时结果正常输出列名,如果为false,输出为c1,c2,c3....
    df.printSchema()
    df.select("gender","locale").show(5)
    //修改列名
    val frame = df.withColumnRenamed("gender","sex")
   frame.printSchema()
    frame.show(5)
    //修改列的类型
    val frame3 = df.withColumn("local",df.col("locale").cast("int"))
  frame3.printSchema()

2.装载JSON数据源

文件预览
在这里插入图片描述
使用sparksession方法

 val spark = SparkSession.builder().config(sparkConf).getOrCreate()
    val df = spark.read.format("json").option("header", "true").
    //true时,打印时会有对应的列名称,改为false,没有行头,只有c1,c2,c3.....
      load("D:\\360Downloads\\scala\\users.json")
    println("******")
    df.printSchema()
    //修改列名
    val df2 = df.withColumnRenamed("Age","age")
  df2.printSchema()
    println("-------")
    df2.select("age","name").show()
    //修改列数据类型,long->int
    val df3 = df.withColumn("age", df.col("Age").cast("int"))
    println(".............")
    df3.printSchema()
    //修改数据类型,String->int,结果是打印不出来,值为null
    val df4 = df.withColumn("name",df.col("Name").cast("int"))
  df4.printSchema()
    df4.show()
    //修改数据值
    val df5 = df.withColumn("age", df.col("Age")+5)//添加数据,会加上
        .withColumn("name1",df.col("name")+"hello") //后面添加数据,会变null
    df5.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值