
边缘检测
文章平均质量分 81
努力的小柚
努力摸鱼的咸鱼
展开
-
LDC: Lightweight Dense CNN for Edge Detection
• 提出了一种轻量级 CNN 架构,它只有 674K 个参数,而 DexiNed 中有 35M 个参数。• 与最先进的边缘检测器(参数少于1M)进行了广泛的比较研究。本文完全致力于边缘检测,即所有考虑进行定量比较的模型都使用 BIPED、MDBD 和新的 BRIND 数据集来训练和验证模型。此外,每个模型都使用其他数据集进行交叉验证。• 进行深入的消融研究,直至达到稳健的LDC。原创 2023-11-14 06:00:00 · 1054 阅读 · 2 评论 -
PiDiNet:Pixel Difference Networks for Efficient Edge Detection
传统边缘检测器仅用作一些现有方法中提取候选边缘点的辅助工具。直观上,边缘表现出不同的特定图案,如直线、角和“X”连接点。而基于 CNN 的边缘检测的高性能是通过大量预训练的 CNN 主干来实现的,这会消耗内存和能量。PiDiNet 采用新颖的像素差分卷积,将传统的边缘检测算子集成到现代 CNN 中流行的卷积运算中,以增强任务性能。我们相信可以衍生出一种新型的卷积运算,以满足以下需求。首先,它可以轻松捕获图像梯度信息,有利于边缘检测,并且CNN模型可以更加专注,释放处理大量不相关图像特征的负担。原创 2023-11-13 11:37:11 · 2412 阅读 · 0 评论 -
Holistically-Nested Edge Detection(HED)
2015年发表的《整体嵌套边缘检测》当时存在的视觉问题中的两个重要问题:(1)整体图像训练和预测;(2)多尺度和多层次的特征学习。整体嵌套边缘检测器(HED)解决了两个关键问题:(1)受全卷积神经网络的启发,用于图像到图像分类的整体图像训练和预测(系统以图像为输入,直接生成边缘图图像作为输出)(2)嵌套多尺度特征学习,其灵感来自深度监督网络,执行深层监督以“指导”早期分类结果。我们发现,这些底层技术的有利特性体现在HED既准确又计算高效。原创 2023-10-07 14:56:08 · 787 阅读 · 1 评论 -
Richer Convolutional Features for EdgeDetection(RCF)
具体来说,我们调整图像的大小以构建图像金字塔,并且这些图像中的每一个都被单独输入到我们的单尺度检测器中。为了研究包括额外的非线性是否有帮助,我们在每个阶段的1×1−21或1×1–1 conv层之后连接ReLU层。然而,网络的性能更差。由于VGG16中conv层的感受野大小彼此不同,RCF提供了比现有机制更好的机制来学习来自各级卷积特征的多尺度信息,我们认为这些特征都与边缘检测有关。其中X(k)i是来自阶段k的激活值,而Xfuse i来自融合层,|I|是图像I中的像素数,K是级数(此处等于5)。原创 2023-10-05 16:56:02 · 314 阅读 · 2 评论 -
边缘检测涉及的评价指标
F-measure 是一种常用的综合评价指标,用于度量图像边缘检测算法的准确性和召回率之间的平衡。通常情况下,F-度量的数值越高越好,表示算法在边缘检测中的性能越好。这意味着每个图像都可以有不同的阈值,根据图像的特性来确定最佳的阈值。OIS 旨在更精细地评估每个图像上的算法性能,因为不同图像可能需要不同的阈值才能获得最佳结果。它采用了一种固定的阈值,该阈值对于数据集中的所有图像都是相同的。在边缘检测中,ODS F-度量通常用于表示综合性能,考虑了边缘检测的准确性和召回率等因素,以综合评估算法的效果。原创 2023-10-03 16:03:57 · 1620 阅读 · 0 评论 -
TRADITIONAL METHOD INSPIRED DEEP NEURAL NETWORK FOR EDGE DETECTION(TIN)
从一个简单的特征提取器开始,它是一个3x3卷积神经网络层,存在16个输出映射。(图6中的点A)我们使用扩张卷积来构建多尺度滤波。扩张卷积可以用更少的参数捕获更大的感受野。我们称这个模块为Enrichment。Enrichment模块如下:3x3表示过滤器大小为3x3,16表示输入的数量,32表示输出的数量/滤波器的数量。每个扩张滤波器的输出在末尾相加。(图6中的点B)使用了八个1x1卷积层,以及一个Sigmoid激活函数。原创 2023-10-03 14:43:36 · 255 阅读 · 0 评论