- 博客(16)
- 收藏
- 关注
原创 Llama微调-量化-部署
预训练模型的参数不去更改,在执行下游任务的时候输出由原来的模型和新训练好的权重共同决定这组权重对输入乘上了一个rank,大大减少了参数量。
2024-10-30 16:06:44 544
原创 Python错误 ‘gbk‘ codec can‘t decode byte 0x80 in position 0: illegal multibyte sequence
在open()函数里面指定。
2024-10-24 19:37:24 101
原创 安装tensorflowgpu版本以及遇到的报错TypeError: Descriptors cannot not be created directly.
可能比较高就行(>10?)(反正好像没有pytorch要求那么严格,pytorch好像2个cuda版本对应一个pytorch版本,tensorflow具体我没看,我的cuda版本很高)进入下面官网下载对应版本的whl文件(好像需要翻墙才能下,反正我是。安装GPU版本的前提是。
2024-10-19 14:40:19 228
原创 window下w64devkit编译llama.cpp
基本上都是使用cmake切换到llama.cpp路径调用以下命令我一直报错,无法解决参考以下链接解决了。
2024-09-30 14:00:42 429
原创 Huggingface知识图谱任务
对文本内容完成实体抽取,建立不同实体之间的联系例如主体为百日咳,客体就为症状、病因、相关疾病等text = '据报道称,新冠肺炎患者经常会发热、咳嗽,少部分患者会胸闷、乏力,其病因包括: 1.自身免疫系统缺陷\n2.人传人。' # content是输入的一段文字针对输入的文本建立以下的关系:运行demo发生报错是因为写地址的时候需要用\\不然\t\n之类的会读取异常。
2024-09-22 19:23:52 815
原创 Vit trainsfomer
1.把图片切分成很多个子图,每个子图用卷积神经网络去提取特征2.假设卷积网络里面有100个卷积核,那最终一张子图就可以得到100维的特征向量3.此时计算出来的特征没有考虑到其他图片的信息,因此使用self_attn4.对于分类任务,我们希望得到一个全局的信息,因此再加入一个cls向量,去和其他每张图去算self_attn,分析在分类过程中每张子图的重要程度。
2024-09-19 14:56:18 815
原创 Ner(命名实体识别)Doccano文本标注工具
然后在Annaconda Prompt里面进入对应环境。可能因为numpy版本报错,降一下版本。我把doccano装在Ner环境里了。需要python3.8以上。注册过后直接键入这个就行。
2024-09-07 22:12:57 250
原创 在强化学习策略梯度下降过程中记录每一轮训练的损失和得分
outcome是train.py同级的目录,train_date_kaiti.pkl是该目录下的pkl文件。open()的第2个参数改成了'rb'表示read模式调用数据,之前是'wb',write模式写入数据。直接采用torch.hstack()不断堆叠,最后再reshape(-1,batch)就行。"outcome/train_date_kaiti.pkl"是创建好的文件。每一轮的得分是一个由batch个元素组成的1维张量。必须import之前定义好的类才能正确读取。损失直接用空列表记录。
2024-08-31 18:13:28 150
原创 使用transformers.Trainer进行模型测试的时候报错:_resume_backend() takes 1 positional argument but 2 were given
把ipython换为8.16.1的版本。
2024-08-14 10:24:01 197
原创 使用transfomers.Trainer进行训练,出现报错:AttributeError: module ‘wandb‘ has no attribute ‘termwarm‘以及‘log’
运行如下代码的时候出现标题上的报错,将wandb更新到最新版本或者降为老版本都无法解决。将版本更新为3.20.0即可解决。原因是protobuf版本太高。
2024-08-14 09:33:50 156
原创 如何配置python中的apex包到安装好的环境里
4.输入命令 python setup.py install。2.进入pycharm,在需要安装的环境里打开终端。1.在github上下载apex包。3.输入cd+复制的路径切换路径。
2024-08-05 19:59:48 356
原创 神经网络与深度学习-第一次作业-BP网络
多层感知机由多个神经元层组成,包括输入层、一个或多个隐藏层以及输出层。每个神经元层都由多个神经元组成,神经元之间通过连接权重相连。反向传播:从输出层开始,根据误差值计算输出层神经元的梯度,并将梯度传播回隐藏层,再传播回输入层。正向传播时输入信号从输入层经隐藏层传向输出层,若输出层得到了期望的输出则歇息算法结束,否则转至方向传播。前向传播:将训练样本输入网络,通过激活函数计算每个神经元的输出,并将输出传递到下一层。初始化网络:设置输入层、隐藏层和输出层的节点数,并随机初始化网络的权重和偏置。
2024-04-01 15:15:27 210
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人