1.题目描述
给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−2^31 , 2^31 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
示例 1:
输入:x = 123
输出:321
示例 2:
输入:x = -123
输出:-321
示例 3:
输入:x = 120
输出:21
示例 4:
输入:x = 0
输出:0
提示:
-2^31 <= x <= 2^31 - 1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/reverse-integer
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2.解题思路
这个题没什么可说的,值得注意的是int的范围
int的范围是-2147483648-------2147483647
力扣里面有定义的宏INT_MAX和INT_MIN,不过这个数字似乎好多地方用到,顺便记一下。
给定的是一个整数x,我们用一个变量res保存反转后的数
起始res = 0;
每次取x的个位p,即p = x % 10,
然后去掉x的个位(当然不是减掉,而是得到x个位之前的数字,此时位数比之前少),即x /= 10;
判断如果加上p之后,res是否溢出,
(1)正数
如果res > INT_MAX / 10(即res大于214748364),
那么res乘以10就溢出了,(res = res * 10 + p),直接返回0
如果res 等于 INT_MAX(即res 等于214748364),
那么判断p是否大于7,如果大于7,
那么就会溢出(214748364 * 10 + 8 > 2147483647)。
(1)负数
如果res > INT_MIN / 10(即res大于-214748364),
那么res乘以10就溢出了,(res = res * 10 + p),直接返回0
如果res 等于 INT_MIN(即res 等于-214748364),
那么判断p是否小于8,如果小于8,
那么就会溢出(-214748364 * 10 - 9 > -2147483649)。
3.代码
int reverse(int x) {
int max = 2147483647;
int min = -2147483648;
int res = 0;
while(x != 0){
int p = x % 10;
x /= 10;
if((res > max / 10) || ((res == max / 10) && p > 7)){
return 0;
}
else if((res < min / 10) || ((res == min / 10) && p < -8)){
return 0;
}
else{
res = res*10+p;
}
}
return res;
}
结果
4.结语
东西得多用用。