算法基础3、整数二分

整数二分

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

有单调性一定可以二分,没有单调性也可以二分
本质:定义一个性质,左半边不满足这个性质,右半边满足这个性质
mid=(l+r)/2
为啥在l=mid时需要(l+r+1)/2 因为向下取整可能mid=l,结果时l=mid就会死循环
感觉就是找这个分界的左边界和右边界,中间与x比,定x范,移 l r 边界范围,若l = mid, 则有+1
先定左边界,只能是卡在q[mid]大于等于x值时,左边界一定在关于mid的范围里
在这里插入图片描述

完整代码

#include <iostream>

using namespace std;

const int N=100010;
int n,m;
int q[N];

int main()
{
    scanf("%d %d",&n,&m);
    for(int i=0;i<n;i++) scanf("%d",&q[i]);
    
    while(m--)
    {
        int x;
        scanf("%d",&x);
        
        int l=0, r =n - 1;
        while(l<r)
        {
            int mid=l +r >>1;
            if(q[mid] >= x) r=mid;
            else l = mid + 1;//else 就不取等了
        }
        if (q[l] != x) cout<<"-1 -1" <<endl;
        else
        {
            cout<< l <<" ";
            
            int l = 0, r = n - 1;
            while(l < r)
            {
                int mid= l + r + 1 >>1;
                if(q[mid] <= x) l = mid;
                else r = mid -1;
            }
         
            cout << l << endl;
        }
        
    }
    
    return 0;
}

报错点:

  1. 在寻找右边界的时候要重置 l r 的值
  2. 输出-1 -1 要加 “ ”
  3. mid的值要不断更新,所以得放在while(l < r)里面
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值