整数二分
bool check(int x) {/* ... */} // 检查x是否满足某种性质
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
有单调性一定可以二分,没有单调性也可以二分
本质:定义一个性质,左半边不满足这个性质,右半边满足这个性质
mid=(l+r)/2
为啥在l=mid时需要(l+r+1)/2 因为向下取整可能mid=l,结果时l=mid就会死循环
感觉就是找这个分界的左边界和右边界,中间与x比,定x范,移 l r 边界范围,若l = mid, 则有+1
先定左边界,只能是卡在q[mid]大于等于x值时,左边界一定在关于mid的范围里
完整代码
#include <iostream>
using namespace std;
const int N=100010;
int n,m;
int q[N];
int main()
{
scanf("%d %d",&n,&m);
for(int i=0;i<n;i++) scanf("%d",&q[i]);
while(m--)
{
int x;
scanf("%d",&x);
int l=0, r =n - 1;
while(l<r)
{
int mid=l +r >>1;
if(q[mid] >= x) r=mid;
else l = mid + 1;//else 就不取等了
}
if (q[l] != x) cout<<"-1 -1" <<endl;
else
{
cout<< l <<" ";
int l = 0, r = n - 1;
while(l < r)
{
int mid= l + r + 1 >>1;
if(q[mid] <= x) l = mid;
else r = mid -1;
}
cout << l << endl;
}
}
return 0;
}
报错点:
- 在寻找右边界的时候要重置 l r 的值
- 输出-1 -1 要加 “ ”
- mid的值要不断更新,所以得放在while(l < r)里面