摘 要
碳捕集与封存(Carbon Capture and Storage,CCS)技术是减少碳排放的有效途径。CCS主要包括捕集、运输和存储三个环节。本项目主要研究的是CO2管道运输过程中的流量测量与监控问题。受到CO2自身物性影响,管道运输过程中CO2可能呈现气相、液相和气液两相流动状态。精准测量管道中CO2的质量流量在管道安全运输过程中起到重要作用,同时也是大宗碳交易计量的重要依据。
本项目依托多相流及燃烧过程检测技术中心搭建的一套气液两相CO2流量标准实验装置,本文基于数据驱动模型的气液两相流智能测量与状态监控方法。项目使用的基础仪表为科里奥利质量流量计,差压变送器,温度变送器及压力变送器。测量系统基础数据已由前期实验获得,数据驱动模型通过查阅相关论文学习,使用卷积神经网络(CNN)、长短期记忆网络(LSTM)算法建立模型。
本综合实践项目的主要研究内容有:(1)分析测量系统数据,完成数据特征提取;(2)完成适用于二氧化碳流量智能测量与监控的数据驱动模型,采用卷积神经网络(CNN),长短期记忆网络(LSTM)构成数据驱动模型;(3)模型对比,优化与分析。
绪论
课题研究的背景和意义
工业革命以前,大气中的二氧化碳等温室气体在强烈的吸收了地面的长波辐射以后,再向地面反过来辐射波长更长的长波辐射,该长波辐射本对地面起到了保温作用,但自