一、科里奥利质量流量计

本文关注于碳捕集与封存(CCS)技术中的二氧化碳流量测量,利用科里奥利质量流量计、CNN和LSTM建立数据驱动模型。研究了科里奥利质量流量计的结构、原理,并探讨了其在气液两相CO2流量测量中的应用。通过实验数据训练和模型预测,提高了流量测量的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘    要

碳捕集与封存(Carbon Capture and Storage,CCS)技术是减少碳排放的有效途径。CCS主要包括捕集、运输和存储三个环节。本项目主要研究的是CO2管道运输过程中的流量测量与监控问题。受到CO2自身物性影响,管道运输过程中CO2可能呈现气相、液相和气液两相流动状态。精准测量管道中CO2的质量流量在管道安全运输过程中起到重要作用,同时也是大宗碳交易计量的重要依据。

本项目依托多相流及燃烧过程检测技术中心搭建的一套气液两相CO2流量标准实验装置,本文基于数据驱动模型的气液两相流智能测量与状态监控方法。项目使用的基础仪表为科里奥利质量流量计,差压变送器,温度变送器及压力变送器。测量系统基础数据已由前期实验获得,数据驱动模型通过查阅相关论文学习,使用卷积神经网络(CNN)、长短期记忆网络(LSTM)算法建立模型。

本综合实践项目的主要研究内容有:(1)分析测量系统数据,完成数据特征提取;(2)完成适用于二氧化碳流量智能测量与监控的数据驱动模型,采用卷积神经网络(CNN),长短期记忆网络(LSTM)构成数据驱动模型;(3)模型对比,优化与分析。

绪论

课题研究的背景和意义

工业革命以前,大气中的二氧化碳等温室气体在强烈的吸收了地面的长波辐射以后,再向地面反过来辐射波长更长的长波辐射,该长波辐射本对地面起到了保温作用,但自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值