【1.使用Index和Match函数自动补全内容】

前言

如何利用函数自动填充内容

先说结论,本文的目的是通过使用Excel的函数,实现只要填写任意一部分的数据,其他数据就可以自动填充。效果如下:

比如你有一个送货单如下:

在这里插入图片描述
那比如9月1号有新的送货单,一般来说我们肯定是希望少填点东西,比如我现在就希望只需要输入料号数量,然后品名规格就会自动根据你打的料号去匹配之前的数据,比如上面的图片,实现我只要打料号,品名规格就会自动填充

注意:前提是你之前要填过这一行数据,不仅可以通过料号搜规格,也可以反过来,怎么样都行

可能送货单还不是特别明显,但是如果是一个月一次的对账单,那可以想象能节省多少时间。

效果

  • 效果视频如下

### 模板匹配算法在三维模型补全中的应用及实现 #### 背景介绍 点云模板匹配是一种通过比较目标点云与已有点云模板来定位识别特定形状的技术[^1]。该技术广泛应用于计算机视觉领域,尤其是在物体识别、姿态估计以及场景重建等方面具有重要作用。当涉及到三维模型的补全时,模板匹配可以通过提供局部几何特征的信息,在缺失部分的预测中发挥关键作用。 #### 应用原理 在三维模型补全任务中,模板匹配的核心在于利用预先定义好的点云模板作为参考,通过对齐这些模板与现有不完整的点云数据,从而推断出可能存在的缺失区域结构。具体来说,这一过程涉及以下几个方面: - **局部特征提取**:为了提高匹配精度,通常会先从原始点云中提取鲁棒性强的局部几何特征,例如法向量、曲率或其他描述符[^2]。 - **相似度计算**:基于上述特征,采用距离度量函数(如欧氏距离或更复杂的描述子对比方式),评估候选模板与实际观测之间的相似程度[^3]。 - **优化求解**:最终通过迭代调整变换参数(平移、旋转缩放等操作),使得选定的最佳匹配模板能够尽可能贴合到待修复部位上,并据此推测丢失的数据分布情况[^4]。 #### 实现方法概述 以下是几种常见的实现路径及其特点说明: ##### 方法一:ICP (Iterative Closest Point) 变体结合模板库检索 这种方法首先建立一个包含多种典型部件形式的标准模板集合;接着运用改进版 ICP 算法完成初步配准工作之后再挑选最接近的理想样本填充空白处[^5]。 ```python from open3d import registration_icp, TransformationEstimationPointToPoint def icp_based_template_matching(source_cloud, target_templates): best_match_index = None min_distance = float('inf') for i, template in enumerate(target_templates): result = registration_icp( source=source_cloud, target=template, max_correspondence_distance=0.02, estimation_method=TransformationEstimationPointToPoint() ) fitness_score = result.fitness if fitness_score < min_distance: min_distance = fitness_score best_match_index = i return target_templates[best_match_index], min_distance ``` ##### 方法二:深度学习驱动下的端到端框架设计 近年来随着人工智能的发展,也有研究者尝试构建卷积神经网络(Convolutional Neural Networks,CNNs)[^6] 或图神经网络(Graph Neural Networks,GNNs)[^7] 来自动习得潜在规律并直接输出完整形态表示结果而无需显式的传统手工设定规则流程。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值