1、tf.ones函数
函数原型:
tf.ones(
shape,
dtype=tf.dtypes.float32,
name=None
)
函数说明:
生成给定形状的全1的tensor张量
函数使用:
>>> a = tf.ones((2, 2))
>>> a
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
[1., 1.]], dtype=float32)>
2、tf.zeros函数
函数原型
tf.zeros(
shape,
dtype=tf.dtypes.float32,
name=None
)
函数说明
生成全0的tensor张量
函数使用
>>> a = tf.zeros((2, 2))
>>> a
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[0., 0.],
[0., 0.]], dtype=float32)>
3、tf.ones_like函数
函数原型
tf.ones_like(
input, dtype=None, name=None
)
函数说明
根据给定的张量生成相同形状的全1的tensor张量
函数使用
>>> a = tf.constant([[1, 2], [3, 4]])
>>> b = tf.ones_like(a)
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[1, 1],
[1, 1]])>
4、tf.zeros_like函数
函数原型
tf.zeros_like(
input, dtype=None, name=None
)
函数说明
根据给定的张量生成相同形状的全0的tensor张量
函数使用
>>> a = tf.constant([[1, 2], [3, 4]])
>>> b = tf.zeros_like(a)
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[0, 0],
[0, 0]])>
5、tf.fill函数
函数原型
tf.fill(
dims, value, name=None
)
函数说明
根据给定形状的生成全是值value的tensor张量
函数使用
>>> a = tf.fill((2, 2), 2)
>>> a
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[2, 2],
[2, 2]])>
6、tf.eye函数
函数原型
tf.eye(
num_rows,
num_columns=None,
batch_shape=None,
dtype=tf.dtypes.float32,
name=None
)
函数说明
生成一个单位张量或者根据给定batch_shape生成一批单位张量
函数使用
>>> a = tf.eye(3)
>>> a
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)>
>>> a = tf.eye(2, 3)
>>> a
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 0., 0.],
[0., 1., 0.]], dtype=float32)>
>>> a = tf.eye(2, batch_shape=[2])
>>> a
<tf.Tensor: shape=(2, 2, 2), dtype=float32, numpy=
array([[[1., 0.],
[0., 1.]],
[[1., 0.],
[0., 1.]]], dtype=float32)>
>>> a = tf.eye(2, batch_shape=[2, 2])
>>> a
<tf.Tensor: shape=(2, 2, 2, 2), dtype=float32, numpy=
array([[[[1., 0.],
[0., 1.]],
[[1., 0.],
[0., 1.]]],
[[[1., 0.],
[0., 1.]],
[[1., 0.],
[0., 1.]]]], dtype=float32)>
7、tf.one_hot函数
函数原型
tf.one_hot(
indices,
depth,
on_value=None,
off_value=None,
axis=None,
dtype=None,
name=None
)
函数说明
产生一个用one_hot编码的张量,参数indices相当于一个表示类别的列表,参数depth相当于有多少类。还有两个参数on_value、off_value分别表示用于one_hot编码里面的0-1的值。aixs表示在哪个维度上编码,默认为None或者-1,在最后的一个维度编码。
函数使用
>>> a = tf.one_hot([0, 2, 3], 4)
>>> a
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[1., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], dtype=float32)>
>>> a = tf.one_hot([0, 2, 3], 4, on_value=2, off_value=1)
>>> a
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[2, 1, 1, 1],
[1, 1, 2, 1],
[1, 1, 1, 2]])>
8、range函数
函数原型
tf.range(limit, delta=1, dtype=None, name='range')
tf.range(start, limit, delta=1, dtype=None, name='range')
函数说明
产生一定顺序的张量
函数使用
>>> a = tf.range(5)
>>> a
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>
>>> b = tf.range(1, 6, 2)
>>> b
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 5])>
9、linspace函数
函数原型
tf.linspace(
start, stop, num, name=None, axis=0
)
函数说明
生成均匀间隔数量为num的张量
函数使用
>>>tf.linspace(10.0, 12.0, 3, name="linspace")
>>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 11., 12.], dtype=float32)>
>
>>> tf.linspace([0., 5.], [10., 40.], 5, axis=0)
<tf.Tensor: shape=(5, 2), dtype=float32, numpy=
array([[ 0. , 5. ],
[ 2.5 , 13.75],
[ 5. , 22.5 ],
[ 7.5 , 31.25],
[10. , 40. ]], dtype=float32)>