tf.ones、tf.zeros、tf.ones_like、tf.zeros_like、tf.fill、tf.eye、tf.one_hot、tf.range、tf.linspace函数

1、tf.ones函数
函数原型:
tf.ones(
    shape,
    dtype=tf.dtypes.float32,
    name=None
)
函数说明:

生成给定形状的全1的tensor张量

函数使用:
>>> a = tf.ones((2, 2))
>>> a
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 1.],
       [1., 1.]], dtype=float32)>
2、tf.zeros函数
函数原型
tf.zeros(
    shape,
    dtype=tf.dtypes.float32,
    name=None
)
函数说明

生成全0的tensor张量

函数使用
>>> a = tf.zeros((2, 2))
>>> a
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[0., 0.],
       [0., 0.]], dtype=float32)>
3、tf.ones_like函数
函数原型
tf.ones_like(
    input, dtype=None, name=None
)
函数说明

根据给定的张量生成相同形状的全1的tensor张量

函数使用
>>> a = tf.constant([[1, 2], [3, 4]])
>>> b = tf.ones_like(a)
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[1, 1],
       [1, 1]])>
4、tf.zeros_like函数
函数原型
tf.zeros_like(
    input, dtype=None, name=None
)
函数说明

根据给定的张量生成相同形状的全0的tensor张量

函数使用
>>> a = tf.constant([[1, 2], [3, 4]])
>>> b = tf.zeros_like(a)
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[0, 0],
       [0, 0]])>
5、tf.fill函数
函数原型
tf.fill(
    dims, value, name=None
)
函数说明

根据给定形状的生成全是值value的tensor张量

函数使用
>>> a = tf.fill((2, 2), 2)
>>> a
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[2, 2],
       [2, 2]])>
6、tf.eye函数
函数原型
tf.eye(
    num_rows,
    num_columns=None,
    batch_shape=None,
    dtype=tf.dtypes.float32,
    name=None
)
函数说明

生成一个单位张量或者根据给定batch_shape生成一批单位张量

函数使用
>>> a = tf.eye(3)
>>> a
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)>
>>> a = tf.eye(2, 3)
>>> a
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.]], dtype=float32)>
>>> a = tf.eye(2, batch_shape=[2])
>>> a
<tf.Tensor: shape=(2, 2, 2), dtype=float32, numpy=
array([[[1., 0.],
        [0., 1.]],

       [[1., 0.],
        [0., 1.]]], dtype=float32)>
>>> a = tf.eye(2, batch_shape=[2, 2])
>>> a
<tf.Tensor: shape=(2, 2, 2, 2), dtype=float32, numpy=
array([[[[1., 0.],
         [0., 1.]],

        [[1., 0.],
         [0., 1.]]],


       [[[1., 0.],
         [0., 1.]],

        [[1., 0.],
         [0., 1.]]]], dtype=float32)>
7、tf.one_hot函数
函数原型
tf.one_hot(
    indices,
    depth,
    on_value=None,
    off_value=None,
    axis=None,
    dtype=None,
    name=None
)
函数说明

产生一个用one_hot编码的张量,参数indices相当于一个表示类别的列表,参数depth相当于有多少类。还有两个参数on_value、off_value分别表示用于one_hot编码里面的0-1的值。aixs表示在哪个维度上编码,默认为None或者-1,在最后的一个维度编码。

函数使用
>>> a = tf.one_hot([0, 2, 3], 4)
>>> a
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[1., 0., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]], dtype=float32)>
>>> a = tf.one_hot([0, 2, 3], 4, on_value=2, off_value=1)
>>> a
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[2, 1, 1, 1],
       [1, 1, 2, 1],
       [1, 1, 1, 2]])>
8、range函数
函数原型
tf.range(limit, delta=1, dtype=None, name='range')
tf.range(start, limit, delta=1, dtype=None, name='range')
函数说明

产生一定顺序的张量

函数使用
>>> a = tf.range(5)
>>> a
<tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>
>>> b = tf.range(1, 6, 2)
>>> b
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 5])>
9、linspace函数
函数原型
tf.linspace(
    start, stop, num, name=None, axis=0
)
函数说明

生成均匀间隔数量为num的张量

函数使用
>>>tf.linspace(10.0, 12.0, 3, name="linspace") 
>>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([10., 11., 12.], dtype=float32)>
>
>>> tf.linspace([0., 5.], [10., 40.], 5, axis=0)
<tf.Tensor: shape=(5, 2), dtype=float32, numpy=
array([[ 0.  ,  5.  ],
       [ 2.5 , 13.75],
       [ 5.  , 22.5 ],
       [ 7.5 , 31.25],
       [10.  , 40.  ]], dtype=float32)>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不负韶华ღ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值