DeepSeek 隐私泄露?

大家好,我是钢板兽。

最近,一位社科专业的朋友问我:“如果把一些自己研究方向相关的涉密英文材料上传到 DeepSeek,让它帮忙提取文本并翻译,其他用户会不会通过拷打AI或其他方式获取这些材料的内容?”换句话说,像 DeepSeek 这样的 AI 平台,会不会悄悄地使用用户上传的数据来训练模型?

这个问题让我有点犯难。按常理来说,DeepSeek、ChatGPT 这些大模型平台应该会在服务器中为每位用户创建独立的存储空间,确保数据安全。但事实真的如此吗?

“你会收集我提供给你的材料进行训练吗?”

当我向 DeepSeek、ChatGPT 等 AI 平台询问这个问题时,得到的回答几乎一致:所有大模型都声称不会收集、存储或利用用户输入的数据进行训练。

听起来很安心,对吧?但现实真的如此简单吗?

DeepSeek的回答

ChatGPT的回答

事实上,在这些平台的用户协议和隐私政策中,我们能发现一些微妙的措辞。例如,部分平台会记录用户的交互信息,并以“优化模型、改善服务”为由保留这些数据,甚至可能在“匿名化”后用于训练。

也就是说,虽然 AI 平台不会直接把你的输入一字不落地“喂”给模型,但它们仍可能以其他方式利用你的数据来提升 AI 的表现。

以 DeepSeek 为例,它的隐私政策中写道:

“我们使用您的信息来改进和开发服务,并训练和改进我们的技术,例如我们的机器学习模型和算法……”

DeepSeek隐私政策

而 OpenAI 则更为直白地在隐私政策中写明:

“用户可以在设置中选择是否为未来的模型做出贡献。”

“临时聊天不会用于训练模型”

“默认情况下,不使用 API、ChatGPT Enterprise 和 ChatGPT Team 客户数据进行训练。”

OpenAI隐私政策

也就是说在默认设置的情况下,我们所上传的数据是会被OpenAI用于AI模型训练的,尤其是非API用户(比如免费版ChatGPT),我赶紧看了看自己的ChatGPT账户(plus套餐)设置,果然发现ChatGPT默认为我开启了“模型改进”的选项。

如果你现在去查看自己的 ChatGPT 设置,很可能也会发现这个选项是默认打开的

ChatGPT账户设置

这样看来,尽管所有AI 平台在明面上否认收集数据用于训练,但实际上用户输入的内容仍可能被存储并用于改善 AI 的表现。

除了 AI 平台可能会收集用户数据用于训练,在我们将数据上传到AI平台之后的一系列流程中都会有数据泄露的风险:

  • 数据传输过程中,用户输入的信息会通过互联网传输到云端进行计算,如果传输过程缺乏足够的加密保护,黑客有可能在数据流动过程中拦截你的信息。
  • 很多大模型平台都会暂存用户的输入记录,哪怕它们不会直接用这些数据训练模型。这些存储的数据如果被恶意攻击者获取,也可能会带来信息泄露风险。

如果你的输入涉及隐私或敏感信息,那么最安全的做法就是避免将这些数据上传到大模型平台!但如果你不得不使用 AI 处理相关内容,这里提供几点建议:

  • 在使用 AI 前,阅读该平台的隐私政策,了解它是否存储用户数据、是否会用于训练,以及是否提供数据删除选项。如果可以关闭“改进模型”功能,一定要关掉!
  • 如果数据涉及隐私,可以先删除敏感部分,用符号或代号代替真实信息,让 AI 处理后再手动补充。
  • 如果你的数据涉及公司或研究机密,最安全的方式是避免上传到云端 AI。可以选择本地化 AI 工具,比如 Llama、ChatGLM、DeepSeek 本地版等,都可以部署在自己的电脑或服务器上,这样数据完全不会上传到云端,极大降低了数据泄露的风险。

那么今天关于使用AI过程中数据泄露的内容就介绍到这里了,希望这篇文章可以帮到你。

阅读完这篇文章,你有什么想说的吗,你在使用AI工具的过程中又遇到什么问题吗?欢迎在评论区留言。

Executable: /public/software/gromacs-2023.2-gpu/bin/gmx_mpi Data prefix: /public/software/gromacs-2023.2-gpu Working dir: /public/home/zkj/BSLA_in_Menthol_and_Olecicacid/run1 Command line: gmx_mpi mdrun -deffnm npt-nopr -v -update gpu -ntmpi 0 -ntomp 1 -nb gpu -bonded gpu -gpu_id 0 Back Off! I just backed up npt-nopr.log to ./#npt-nopr.log.5# Reading file npt-nopr.tpr, VERSION 2023.2 (single precision) Changing nstlist from 10 to 100, rlist from 1 to 1.065 Update groups can not be used for this system because there are three or more consecutively coupled constraints ------------------------------------------------------- Program: gmx mdrun, version 2023.2 Source file: src/gromacs/taskassignment/decidegpuusage.cpp (line 786) Function: bool gmx::decideWhetherToUseGpuForUpdate(bool, bool, PmeRunMode, bool, bool, gmx::TaskTarget, bool, const t_inputrec&, const gmx_mtop_t&, bool, bool, bool, bool, bool, const gmx::MDLogger&) Inconsistency in user input: Update task on the GPU was required, but the following condition(s) were not satisfied: The number of coupled constraints is higher than supported in the GPU LINCS code. For more information and tips for troubleshooting, please check the GROMACS website at http://www.gromacs.org/Documentation/Errors ------------------------------------------------------- -------------------------------------------------------------------------- MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD with errorcode 1. NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes. You may or may not see output from other processes, depending on exactly when Open MPI kills them. -------------------------------------------------------------------------- [warn] Epoll MOD(1) on fd 8 failed. Old events were 6; read change was 0 (none); write change was 2 (del): Bad file descriptor [warn] Epoll MOD(4) on fd 8 failed. Old events were 6; read change was 2 (del); write change was 0 (none): Bad file descriptor
03-13
<think>好的,我现在需要帮助用户解决他们在运行GROMACS时遇到的错误。首先,我要仔细看一下用户提供的错误信息,找出关键点。 用户执行的命令是使用gmx_mpi mdrun,带有多个GPU相关的参数,比如-update gpu、-nb gpu、-bonded gpu。错误信息显示在decidegpuusage.cpp的786行,指出无法使用GPU进行更新任务,因为系统的约束条件数目超过了GPU LINCS代码支持的范围。具体来说,系统有三个或更多连续耦合的约束,导致无法在GPU上运行更新任务。 接下来,我需要理解这个错误的背景。GROMACS的GPU加速在约束处理上有一定的限制,特别是LINCS算法在GPU上的实现可能对约束链的长度有要求。当存在多个连续约束时(例如,像某些复杂分子中的多个相连的约束),GPU代码可能无法处理,从而必须回退到CPU运行。但用户强制要求使用GPU进行更新(-update gpu),所以触发了错误。 解决方案方面,用户有几个可能的调整方向。首先,可以尝试不使用GPU进行更新任务,即移除-update gpu选项,或者改为使用CPU处理更新。其次,检查系统的拓扑结构,看看是否有不必要的约束链,可能通过调整力场参数或分子结构来减少连续约束的数量。另外,也可以考虑调整GROMACS的版本或配置,确保使用的版本支持更长的约束链,或者查看官方文档是否有相关补丁或建议。 此外,用户需要检查.tpr文件中的约束设置,比如使用LINCS还是其他约束算法,以及约束的阶数。有时候,调整lincs-order或相关参数可能有助于绕过这个问题。不过,如果系统本身确实存在多个连续约束,可能需要重新考虑模拟的设置,或者接受在CPU上运行更新步骤,以保持模拟的稳定性。 最后,用户可能需要重新生成.tpr文件,如果在修改了运行参数或系统结构后。同时,确保所有相关的GPU驱动和CUDA库都是兼容当前GROMACS版本的。如果问题依旧,查看GROMACS的错误文档或社区讨论,寻找类似问题的解决方案也是必要的。</think>你遇到的错误是由于GROMACS的GPU约束条件限制引起的。以下是逐步分析和解决方案: --- ### **错误原因分析** 1. **核心错误信息**: ```plaintext Update groups can not be used... three or more consecutively coupled constraints The number of coupled constraints is higher than supported in the GPU LINCS code ``` - GROMACS的GPU加速模块对分子系统中的**约束链长度**有限制。当存在**3个或更多连续耦合的约束**(如多个刚性键连接)时,GPU版本的LINCS算法无法处理,导致运行终止。 2. **触发条件**: - 你使用了 `-update gpu` 参数强制要求更新任务在GPU上运行。 - 系统中存在复杂的约束链(例如:水分子、多原子分子中的连续键约束)。 --- ### **解决方案** #### **方法1:禁用GPU更新任务** 修改运行命令,**移除 `-update gpu` 参数**,将更新任务交给CPU处理: ```bash gmx_mpi mdrun -deffnm npt-nopr -v -ntmpi 0 -ntomp 1 -nb gpu -bonded gpu -gpu_id 0 ``` - **关键调整**:去除 `-update gpu`,默认由CPU处理更新任务。 - **原理**:CPU版本的LINCS算法对连续约束无此限制。 --- #### **方法2:检查并简化约束** 1. **检查拓扑文件**: - 确认分子定义中是否存在不必要的**连续约束**(如多个氢原子与同一重原子绑定)。 - 使用 `gmx check` 分析系统约束: ```bash gmx_mpi check -f npt-nopr.tpr ``` 2. **调整约束算法参数**: - 在`.mdp`文件中尝试调整LINCS参数(需重新生成`.tpr`): ```plaintext constraints = h-bonds lincs-order = 4 # 增加LINCS插值阶数(默认4) lincs-iter = 2 # 增加迭代次数(默认1-2) ``` --- #### **方法3:降级GROMACS版本** - **兼容性问题**:某些GROMACS版本对GPU约束处理更严格。可尝试使用**2021.x或更早版本**(需重新编译安装)。 --- ### **附加建议** 1. **调试步骤**: - 运行简化测试系统(如纯水盒子),验证是否为系统特异性问题。 - 使用 `-update cpu` 显式指定CPU更新任务,观察是否解决。 2. **错误文档参考**: - 官方错误说明:[GROMACS Error Documentation](https://manual.gromacs.org/current/user-guide/troubleshooting.html#three-or-more-consecutively-coupled-constraints) --- ### **命令调整示例** ```bash # 使用CPU处理更新任务,GPU处理非键和键合计算 gmx_mpi mdrun -deffnm npt-nopr -v -ntmpi 0 -ntomp 1 -nb gpu -bonded gpu -gpu_id 0 ``` 如果问题仍未解决,请提供`.mdp`文件中的 `constraints` 和 `lincs` 相关参数设置,以便进一步分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值