DeepSeek 隐私泄露?

大家好,我是钢板兽。

最近,一位社科专业的朋友问我:“如果把一些自己研究方向相关的涉密英文材料上传到 DeepSeek,让它帮忙提取文本并翻译,其他用户会不会通过拷打AI或其他方式获取这些材料的内容?”换句话说,像 DeepSeek 这样的 AI 平台,会不会悄悄地使用用户上传的数据来训练模型?

这个问题让我有点犯难。按常理来说,DeepSeek、ChatGPT 这些大模型平台应该会在服务器中为每位用户创建独立的存储空间,确保数据安全。但事实真的如此吗?

“你会收集我提供给你的材料进行训练吗?”

当我向 DeepSeek、ChatGPT 等 AI 平台询问这个问题时,得到的回答几乎一致:所有大模型都声称不会收集、存储或利用用户输入的数据进行训练。

听起来很安心,对吧?但现实真的如此简单吗?

DeepSeek的回答

ChatGPT的回答

事实上,在这些平台的用户协议和隐私政策中,我们能发现一些微妙的措辞。例如,部分平台会记录用户的交互信息,并以“优化模型、改善服务”为由保留这些数据,甚至可能在“匿名化”后用于训练。

也就是说,虽然 AI 平台不会直接把你的输入一字不落地“喂”给模型,但它们仍可能以其他方式利用你的数据来提升 AI 的表现。

以 DeepSeek 为例,它的隐私政策中写道:

“我们使用您的信息来改进和开发服务,并训练和改进我们的技术,例如我们的机器学习模型和算法……”

DeepSeek隐私政策

而 OpenAI 则更为直白地在隐私政策中写明:

“用户可以在设置中选择是否为未来的模型做出贡献。”

“临时聊天不会用于训练模型”

“默认情况下,不使用 API、ChatGPT Enterprise 和 ChatGPT Team 客户数据进行训练。”

OpenAI隐私政策

也就是说在默认设置的情况下,我们所上传的数据是会被OpenAI用于AI模型训练的,尤其是非API用户(比如免费版ChatGPT),我赶紧看了看自己的ChatGPT账户(plus套餐)设置,果然发现ChatGPT默认为我开启了“模型改进”的选项。

如果你现在去查看自己的 ChatGPT 设置,很可能也会发现这个选项是默认打开的

ChatGPT账户设置

这样看来,尽管所有AI 平台在明面上否认收集数据用于训练,但实际上用户输入的内容仍可能被存储并用于改善 AI 的表现。

除了 AI 平台可能会收集用户数据用于训练,在我们将数据上传到AI平台之后的一系列流程中都会有数据泄露的风险:

  • 数据传输过程中,用户输入的信息会通过互联网传输到云端进行计算,如果传输过程缺乏足够的加密保护,黑客有可能在数据流动过程中拦截你的信息。
  • 很多大模型平台都会暂存用户的输入记录,哪怕它们不会直接用这些数据训练模型。这些存储的数据如果被恶意攻击者获取,也可能会带来信息泄露风险。

如果你的输入涉及隐私或敏感信息,那么最安全的做法就是避免将这些数据上传到大模型平台!但如果你不得不使用 AI 处理相关内容,这里提供几点建议:

  • 在使用 AI 前,阅读该平台的隐私政策,了解它是否存储用户数据、是否会用于训练,以及是否提供数据删除选项。如果可以关闭“改进模型”功能,一定要关掉!
  • 如果数据涉及隐私,可以先删除敏感部分,用符号或代号代替真实信息,让 AI 处理后再手动补充。
  • 如果你的数据涉及公司或研究机密,最安全的方式是避免上传到云端 AI。可以选择本地化 AI 工具,比如 Llama、ChatGLM、DeepSeek 本地版等,都可以部署在自己的电脑或服务器上,这样数据完全不会上传到云端,极大降低了数据泄露的风险。

那么今天关于使用AI过程中数据泄露的内容就介绍到这里了,希望这篇文章可以帮到你。

阅读完这篇文章,你有什么想说的吗,你在使用AI工具的过程中又遇到什么问题吗?欢迎在评论区留言。

### DeepSeek 泄露事件详情 DeepSeek 泄露事件涉及到了数据安全与隐私保护方面的重要议题[^2]。具体来说,此次泄露事件揭示了 DeepSeek 平台中存在的某些安全隐患和技术漏洞。 #### 事件背景 在一次针对 DeepSeek 的网络攻击中,黑客成功入侵并获取了大量的敏感信息。这些信息不仅包括用户的个人资料,还可能涉及到企业的商业机密以及技术细节。此事件的发生暴露出了当前人工智能平台普遍存在的安全性不足问题。 #### 攻击过程 攻击者利用了特定算法中的潜在缺陷作为突破口进入系统内部。随后,他们绕过了多层防护机制,最终实现了对核心数据库的非法访问。整个过程中,由于缺乏有效的实时监控预警体系,使得攻击行为未能及时被发现和阻止。 #### 影响与后果 这次泄露给受影响方造成了严重的损失:一方面,用户对于平台的信任度大幅下降;另一方面,则引发了社会各界对企业信息安全建设的关注。更重要的是,在中美科技竞争加剧的情况下,此类事件可能会进一步影响国家间的技术交流与发展格局[^3]。 ```python # Python代码示例展示如何模拟检测是否存在SQL注入漏洞(仅用于教育目的) import requests def check_sql_injection(url, param): test_payload = "' OR '1'='1" data = {param: test_payload} response = requests.post(url, data=data) if "success" in response.text.lower(): print(f"[!] Potential SQL Injection vulnerability detected at parameter '{param}'!") else: print("[+] No SQL Injection vulnerability found.") check_sql_injection("http://example.com/login", "username") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值