Redis最佳实践
文章目录
1 Redis键值设计
1.1 优雅的key结构
Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:
- 遵循基本格式:[业务名称]:[数据名]:[id]
- 长度不超过44个字节
- 不包含特殊字符
例如:登录业务,保存用户信息,其key是这样的:
优点:
- 可读性强
- 避免key冲突
- 方便管理
- 更节省内存:key是string类型,底层编码包含int、embstr和raw三种。
- embstr在小于44字节使用,采用连续内存空间,内存占用更小,所以推荐长度小于44字
- 大于44个字节就是raw编码。
- 当string类型key的value值都是数字时,就使用的是int编码。
1.2 拒绝BigKey
1.2.1 什么是BigKey
BigKey通常是以 Key的大小和Key中成员的数量 来综合判定,例如:
- Key本身的数据量过大: 一个String类型的Key,它的值为5MB。
- Key中的成员数过多:一个ZSET类型的Key,它的成员数量为1000个
- Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1000个,但这些成员的Value(值)总大小为100MB。
推荐值:
- 单个key的value小于10KB
- 对于集合类型的key,建议元素数量小于1000
1.2.2 BigKey的危害
-
网络阻塞
对BigKey执行请求时,少量的QPS就可能导致带宽使用率被占满,导致redis实例,乃至所在物理机变慢
-
数据倾斜
BigKey所在的Redis实例内存使用率远超其它实例,无法使数据分片的内存资源达到均衡
因为每个节点插槽数量基本一致,key的数量也基本一致,那么有BigKey的机器的数据量就会超过其它机器,内存使用率就会非常的高,为了解决这个问题,就得对插槽对手动的分配。
-
Redis阻塞
对元素较多的hash、list、zest等做运算会耗时较旧,使主线程被阻塞
-
CPU压力
对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本级其它应用
1.2.3 如何发现BigKey
-
redis-cli --bigkeys
利用retdis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key
-
scan扫描
自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)
-
第三方工具
利用第三方工具,如 Redis-Rdb-Tools分析RDB快照文件,全面分析内存使用情况
-
网络监控
自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
1.2.4 如何删除BigKey
BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题
-
redis 3.0 及以下版本
如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey
-
redis 4.0 及以下版本
Redis在4.0后提供了异步删除的命令:unlink
1.3 恰当的数据类型
例1 :比如存储一个User对象,有三种存储类型
方式一:json字符串
方式二:字段打散
方式三:hash
每一个key在保存的时候都有大量的元信息,无效数据,所以key少点占用的内存少,那么以上三种中hash最好,只有一个key,且ziplist内存优化,访问对象灵活
例2 :假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化
存在的问题:
- hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
- 可以通过hash-max-ziplist-entryies配置entry上限。但是如果entry过多就会导致BigKey问题
方案二:拆分为String类型
虽然解决了BigKey的问题 但是存在其它问题:
- string结构底层没有太多内存优化,内存占用较多
- 想要批量获取这些数据比较麻烦
方案三:拆分为小的hash,将id / 100作为Key,将id % 100 作为field,这样每100个元素为一个hash
最后就会有10000个key,且每个key只有100个元素,内存还是可以使用ziplist优化,又避免了BigKey的问题。
1.4 总结
2 批处理优化
2.1 Pipeline
2.1.1 大数据导入的方式
一对粮食要搬运到仓库,有几种办法?
-
单个命令的执行流程
一次命令的响应时间 = 1次往返的网络传输耗时 + 1次Redis执行命令耗时
-
N条命令依次执行
N次命令的响应时间 = N次往返的网络传输耗时 + N次Redis执行命令耗时
网络传输的时间比远大于Redis执行命令耗时,所以命令响应时间主要是 网络传输的时间
-
N条命令批量执行
N次命令的响应时间 = 1次往返的网络传输耗时 + N次Redis执行命令耗时
这种模式效率最高
MSET:
-
Redis提供了很多Mxxx这样的命令,可以实现批量插入数据,例如:
- mset
- hmset
利用mset批量插入10万条数据:
但是一次性也别发太多数据了,一次性发太多数据,带宽占满,网络会堵塞。
不要在一次性批处理中传输太多命令,否则单次命令占用带宽过多,会导致网络阻塞。
2.1.2 Pipeline
MSET虽然可以批处理,但是却只能操作部分数据类型,因此如果有对复杂数据类型的批处理需要,建议使用Pipeline功能:
MSET中命令是有原子性的,发送到Redis中是一次性执行完。但是Pipeline不是,多条命令执行过程中可能Redis还会执行别的请求中的命令,所以Pipeline执行市场会比MSET时长多一点。
2.1.3 总结
2.2 集群下的批处理
如MSET或Pipeline这样的批处理需要在一次请求中携带多个命令,而此时如果Redis是一个集群,那批处理命令的多个key必须 落在一个插槽 上,否则就会导致执行失败。
hash_tag指的是key的有效部分,比如{}中的数据或者没有大括号就是全部key内容,不过这里肯定是指的是{}。但是这么多key都在一个节点上,容易出现数据倾斜。推荐使用并行slot
3 服务端优化
3.1 持久化配置
Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化遵循下列建议:
- 用来做缓存的Redis实例尽量不要开启持久化功能
- 建议关闭RDB持久化功能,使用AOF持久化
- 利用脚本定期在slave节点做RDB,实现数据备份
- 设置合理的rewrite阈值,避免频繁的bgrewrite
- 配置no-appendfsync-on-rewrite = yes ,禁止在rewrite期间做aof,避免AOF引起的阻塞。
部署有关建议:
- Redis市里的物理机要预留足够内存,应对fork和rewrite
- 单个Redis实例内存上限不要太大,例如4G或8G,可以加快fork的速度,减少主从同步、数据迁移压力
- 不要与CPU密集型应用部署在一起
- 不要与高硬盘负载应用一起部署。例如:数据库、消息队列
就是独占服务器,内存自己用,多个Redis一起开
3.2 慢查询
慢查询: 在Redis执行时耗时超过某个阈值的命令,成为慢查询。
Redis中有个队列,用于存储发送过来的Redis命令。Redis会从队列中依次取出数据执行。如果某个命令执行时间过长,则会阻塞队列中其它命令的执行,从而影响性能。
慢查询的阈值可以通过配置指定:
- slow-log-slower-than:慢查询阈值,单位是微妙。默认是10000,建议1000
慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定
- slow-max-len:慢查询日志(本质是一个队列)的长度,默认是128,建议1000
查看慢查询日志列表:
- slowlog len:查询慢查询日志长度
- slowlog get[n]: 读取n条慢查询日志
- slowlog reset:清空慢查询列表
3.3 命令及安全配置
为了避免漏洞,给出建议:
- Redis一定要设置密码
- 禁止线下使用下面命令:keys、flushall、flushdb、config set等命令,可以利用rename-command禁用
- bind:限制网卡,禁止外网网卡访问
- 开启防火墙
- 不要使用Root账户启动redis
- 尽量不要有默认端口
3.4 内存配置
3.4.1 数据内存的问题
在Redis内存不足时,可能导致Key频繁被删除、响应时间补偿、QPS不稳定等问题。当内存使用率达到90%以上时就需要警惕,并快速定位到内存占用的原因
Redis提供了一些命令,可以查看到Redis目前的内存分配状态:
- info memory
- memory xxx
3.4.2 内存缓冲区的问题
内存缓冲区常见的有三种:
-
复制缓冲区: 主从复制的repl_backlog_buf,如果太小可能导致频繁的全量复制,影响性能。通过repl-backlog-size来设置,默认1mb
因为如果太小了,那么此文件就容易满,出现下图右边那种情况。slave就得采用全量复制
-
AOF缓冲区: AOF刷盘之前的缓冲区域,AOF执行rewrite的缓冲区,无法设置容量上限
-
客户端缓冲区: 分为输入缓冲区(Redis接收数据的缓冲区,应该是那个队列)和输出缓冲区(Redis处理完返回的结果),输入缓冲区最大1GB且不能设置。输出缓冲区可以设置
4 集群最佳实践
集群虽然具备高可用特性,能实现自动故障恢复,如果使用不当,也会存在一些问题:
- 集群完整性问题
- 集群带宽问题
- 数据倾斜问题
- 客户端性能问题
- 命令的集群兼容性问题
- lua和事务问题
4.1 集群完整性问题
在Redis的默认配置中,如果发现任意一个插槽不可用,则整个集群都会停止对外服务
为了保证高可用性,这里建议将上图中yes 改为 false
4.2 集群带宽问题
集群节点之间会不断地互相Ping来确定集群中其他节点的状态。每次Ping携带的信息至少包括:
- 插槽信息
- 集群状态信息
集群中节点越多,集群状态信息数据量也越大,10个节点的相关信息可能达到1kb,此时每次集群互通需要的带宽会非常高
解决途径:
- 避免大集群,集群节点数不要太多,最好少于1000,如果业务庞大,则建立了多个集群
- 避免在单个物理机中运行太多Redis实例
- 配置合适的cluster-node-timeout值