239:滑动窗口最大值
1.暴力求-双重循环-时间复杂度O(n*k)----超时
2.队列方法
队列中保存滑动过程中任意时刻的窗口最大值,里面的数据记录数组索引,索引对应的数组值从大到小排序 。
遍历数组:
- 移除不在当前窗口内的元素索引。
// 队列不为空才能移出数据 // 队列的数组元素存储的索引值 <= i-k 说明窗口往右移动时,应该清除左边的不在窗口内的索引值(==也可以) if (!deque.isEmpty() && deque.peekFirst() <= i - k) { deque.pollFirst(); }
- 从队列尾部移除所有小于当前元素的元素索引,保证队列单调递减。
// 从队列尾部开始,移除所有小于当前元素的元素索引,保证队列递减,首个元素是窗口最大值的索引 //因此当前值最大时,队列数据会被全部删光 while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) { deque.pollLast(); }
- 将当前元素的索引加入队列尾部。
deque.offerLast(i);
- 当遍历到的元素个数达到窗口大小
k
及以上时,记录当前窗口的最大值到结果数组中总结:队列存储索引值,是因为索引值才能更好地表明位置信息。先移除不属于当前窗口的索引值(第一步),然后对列表排序(第二步,第三部),记录结果(第四步)
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0 || k <= 0) {
return new int[0];
}
int n = nums.length;
int[] result = new int[n - k + 1];
// 双端队列,存储数组元素的索引
Deque<Integer> deque = new LinkedList<>();
for (int i = 0; i < n; i++) {
// 如果队列头部的元素已经不在当前滑动窗口内,移除它
if (!deque.isEmpty() && deque.peekFirst() == i - k) {
deque.pollFirst();
}
// 从队列尾部开始,移除所有小于当前元素的元素索引
while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
// 将当前元素的索引加入队列尾部
deque.offerLast(i);
// 当滑动窗口的大小达到 k 时,记录当前窗口的最大值
if (i >= k - 1) {
result[i - k + 1] = nums[deque.peekFirst()];
}
}
return result;
}
}
76:放弃
class Solution {
public String minWindow(String s, String t) {
if (s == null || s.length() == 0 || t == null || t.length() == 0) {
return "";
}
// 统计 t 中每个字符的出现次数
Map<Character, Integer> target = new HashMap<>();
for (char c : t.toCharArray()) {
target.put(c, target.getOrDefault(c, 0) + 1);
}
int left = 0, right = 0;
int minLen = Integer.MAX_VALUE;
int start = 0;
int required = target.size();
int formed = 0;
Map<Character, Integer> window = new HashMap<>();
while (right < s.length()) {
char c = s.charAt(right);
window.put(c, window.getOrDefault(c, 0) + 1);
if (target.containsKey(c) && window.get(c).intValue() == target.get(c).intValue()) {
formed++;
}
while (left <= right && formed == required) {
c = s.charAt(left);
if (right - left + 1 < minLen) {
minLen = right - left + 1;
start = left;
}
window.put(c, window.get(c) - 1);
if (target.containsKey(c) && window.get(c).intValue() < target.get(c).intValue()) {
formed--;
}
left++;
}
right++;
}
return minLen == Integer.MAX_VALUE ? "" : s.substring(start, start + minLen);
}
}
53. 最大子数和
方法一: 使用之前的前缀和方法 -----但有7个测试用例超时
// 前缀和
class Solution {
public int maxSubArray(int[] nums) {
int max = nums[0];
int[] presum = new int[nums.length+1];
presum[0]=0;
//计算前缀和
for(int i=0;i<nums.length; i++){
presum[i+1]=presum[i]+nums[i];
}
for(int i=0;i<nums.length; i++){ //i<nums.length,防止内循环越界,presum[nums.length]-presum[nums.length-1]就代表单独最后一个元素
for(int j=i+1;j<nums.length+1; j++){
int temp = presum[j]-presum[i];
max = Math.max(temp,max);
}
}
return max;
}
}
方法2:动态规划
// dp
class Solution {
public int maxSubArray(int[] nums) {
// 在动态规划中,dp 数组用于保存 子问题 的解。这里 dp[i] 表示以 nums[i] 结尾的连续子数组的最大和。
int[] dp = new int[nums.length];
dp[0] = nums[0];
int res = dp[0];
// 从数组的第二个元素(索引为 1)开始遍历到数组的最后一个元素。这个循环的目的是依次计算以每个元素结尾的连续子数组的最大和。
for(int i=1;i<nums.length; i++){
dp[i] = Math.max(dp[i-1]+nums[i],nums[i]); // 状态转移公式
if(dp[i]>res) res = dp[i];
}
return res;
}
}
//12行代码:dp的核心--状态转移公式
// 对于 dp[i],有两种选择:
// 一种是将当前元素 nums[i] 加入到 以nums[i - 1] 结尾的连续子数组中,此时和为 dp[i - 1] + nums[i]。
// 另一种是从当前元素 nums[i] 开始一个新的连续子数组,此时和为 nums[i]。
// 使用 Math.max 函数取这两种情况的最大值作为 dp[i] 的值,即 dp[i] 是以 nums[i] 结尾的连续子数组的最大和。