模型压缩
文章平均质量分 89
唐三.
上海大学通信与信息工程学院
展开
-
模型剪枝教程-----Hrank
模型剪枝原创 2022-09-24 00:09:22 · 1517 阅读 · 1 评论 -
Dropout、剪枝、正则化有什么关系?什么是Dropout?
Dropout、剪枝、正则化有什么关系?{\color{Red}Dropout、剪枝、正则化有什么关系?}Dropout、剪枝、正则化有什么关系?文章目录Dropout、剪枝、正则化有什么关系?{\color{Red}Dropout、剪枝、正则化有什么关系?}Dropout、剪枝、正则化有什么关系?前言1.Dropout、正则化2.1.引入库2.读入数据总结前言上次有同学聊天时聊起Dropout和剪枝有什么区别,似乎并没有什么不同?我想了一下,做出了一下思考:首先Dropout和pruning都属原创 2021-07-20 22:53:23 · 3364 阅读 · 3 评论 -
《Filter Pruning using Hierarchical Group Sparse》ICPR2020论文详解
(i)本文介绍,分层的分组稀疏正则化是有效的.(ii)在对于初始模型进行分层的分组稀疏正则化之后,依据对分类损失做的一个简单判断来看剪枝是否有影响,而简单就是对随机选择的训练样本进行部分采样计算,从而得到紧凑的网络。(iii)结果表明,该方法可以减少CIFAR-10的ResNet参数50%以上,精度仅下降0.3%。然后与baseline相比,TinyImageNet-200的ResNet参数减少了34%,精度反而更高。原创 2021-07-19 23:00:22 · 918 阅读 · 5 评论 -
3.关于剪枝论文的分类和整理(随笔)
3.关于剪枝的分类和论文整理(随笔){\color{Red}3.关于剪枝的分类和论文整理(随笔)}3.关于剪枝的分类和论文整理(随笔)文章目录3.关于剪枝的分类和论文整理(随笔){\color{Red}3.关于剪枝的分类和论文整理(随笔)}3.关于剪枝的分类和论文整理(随笔)前言前言手上的事情比较多,即把剪枝相关的最近阅读的论文稍稍整理一下,各位小伙伴需要的自取啦。...原创 2021-06-29 11:55:06 · 810 阅读 · 1 评论 -
2.关于剪枝算法的分类和论文整理
关于剪枝的分类2上次列举了剪枝的分类,分别列举了可以从那几个方面对模型进行剪枝,这里从另一个方向上更宏观地对剪枝进行分类。进行了成体系的剪枝论文整理,并对Pruning Filter In Filter, NIPS2020这篇论文做了详细分析。前言剪枝可以分为结构化剪枝和非结构化剪枝剪枝可以分为结构化剪枝和非结构化剪枝,剪枝可以分为结构化剪枝和非结构化剪枝。结构化剪枝就是对原有网络的channel级或者layer级进行剪枝,非结构化剪枝就是剪去的并不足以组成一个结构。原创 2021-06-11 21:52:07 · 10751 阅读 · 10 评论 -
关于剪枝对象的分类(weights剪枝、神经元剪枝、filters剪枝、layers剪枝、channel剪枝、对channel分组剪枝、Stripe剪枝)
文章目录剪枝动态分析:1.对weights剪枝:2.对神经元剪枝:3.解决方案:剪枝动态分析:weights剪枝、神经元剪枝、filters剪枝、layers剪枝例如:先讲对weights做剪枝和对神经元做剪枝的区别1.对weights剪枝:提示:weights剪枝:例如:顾名思义,也就是将权重矩阵里一部分的权值踢掉,那它是怎么踢掉的呢?就是通过将权重设置为0来实现的,那对那些weighs去掉呢?答案很简单,就是直接把那些数值 ≈{\color{Blue} \approx}≈ 0的weight原创 2021-06-04 14:39:30 · 10459 阅读 · 4 评论 -
【EagleEye】2020-ECCV-EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning-论文详解
第一步首先去训练一个参数过渡模型比较大的网络,第二步对它以一定的剪枝率做剪枝。第三步,再进行finetuning换句话说,如果我们从这群静态剪枝之后的subnets中去选择一个精度较高的子网络,并不能代表他经过finetune之后就是一个优质的子网络。原创 2021-05-21 23:39:22 · 1004 阅读 · 1 评论 -
Accelerate CNNs from Three Dimensions: A Comprehensive Pruning Framework详解
Accelerate CNNs from Three Dimensions: A Comprehensive Pruning Framework详解这篇论文是今年2月份发表在ICML上的,他提出了一种全面的剪枝框架,可以从三个维度对CNN进行加速。 这篇文章很像2019年ICML提出的EfficientNet的思路,只不过EfficientNet实在三个维度上使用复合系数(也就是一组系数)去放大网络,而这里是确定一组系数去pruning网络。你好!新的改变我们对Markdown编辑器进行了一些功能拓原创 2021-05-14 17:46:07 · 1351 阅读 · 1 评论