浮点型存储

根据 IEEE 754 标准,浮点数以以下形式表示:

V=(-1)^S * M * 2^E

其中S是符号位,M是尾数位,E是指数位。

以5.5举例

转化位二进制表示:

        101.1

        整数部分5用二进制表示是101。小数部分从第一位开始依次为2^-1, 2^-2,2^-3,2^-4……,因此小数部分也是1,组合起来是101.1。因此可看出在某些情况下,小数部分无法精准表示,只能无限接近。

用科学计数法表示:

        1.011*2^2

        将二进制数转化为1.xx*2^E方形式,此时已经转化为了V=(-1)^S * M * 2^e的形式。规定M是一个大于1小于2的数,因此小数点可能前移也可能后移,所以e可能是正数也可能是负数。为了更易于计算,我们为e加上一个偏移量调整为无符号数。单精度浮点数和双精度浮点数中,E分别占8和11个比特位,因此E=e+127或者E=e+1023。

        因此可得:

单精度浮点数(4Byte 32bit)
SE(8bit)M(23bit)
双精度浮点数(8Byte 64bit)
...
SE(11bit)M(52bit)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值