最短编辑距离
题目描述
给定两个字符串AA和BB,现在要将AA经过若干操作变为BB,可进行的操作有:
1.删除–将字符串AA中的某个字符删除。
2.插入–在字符串AA的某个位置插入某个字符。
3.替换–将字符串AA中的某个字符替换为另一个字符。
现在请你求出,将A变为B至少需要进行多少次操作。
算法思想
状态表示:
dp[i][j]表示将字符串A中前i个字符编辑成字符串B中前j个字符所要进行的最少操作
- 删除: d p [ i − 1 ] [ j ] + 1 dp[i-1][j] + 1 dp[i−1][j]+1
- 插入: d p [ i ] [ j − 1 ] + 1 dp[i][j-1] + 1 dp[i][j−1]+1
- 替换:
I. a [ i ] = = b [ j ] a[i]==b[j] a[i]==b[j],操作次数 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i−1][j−1]
II. a [ i ] ! = b [ j ] a[i]!=b[j] a[i]!=b[j],操作次数 d p [ i − 1 ] [ j − 1 ] + 1 dp[i-1][j-1] + 1 dp[i−1][j−1]+1
初始状态:
f [ 0 ] [ i ] = i f[0][i] = i f[0][i]=i
f [ i ] [ 0 ] = i f[i][0] = i f[i][0]=i
时间复杂度
O ( M ∗ N ) O(M*N) O(M∗N)
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int dp[N][N];
char a[N], b[N];
int main(){
int n, m;
scanf("%d%s%d%s", &n, a + 1, &m, b + 1);
for(int i = 1; i <= m; i++) dp[0][i] = i;
for(int i = 1; i <= n; i++) dp[i][0] = i;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++){
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
if(a[i] == b[j]) dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
else dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + 1);
}
printf("%d\n", dp[n][m]);
return 0;
}