最短编辑距离

最短编辑距离

题目描述

给定两个字符串AA和BB,现在要将AA经过若干操作变为BB,可进行的操作有:

1.删除–将字符串AA中的某个字符删除。
2.插入–在字符串AA的某个位置插入某个字符。
3.替换–将字符串AA中的某个字符替换为另一个字符。
现在请你求出,将A变为B至少需要进行多少次操作。

算法思想

状态表示:
dp[i][j]表示将字符串A中前i个字符编辑成字符串B中前j个字符所要进行的最少操作

  1. 删除: d p [ i − 1 ] [ j ] + 1 dp[i-1][j] + 1 dp[i1][j]+1
  2. 插入: d p [ i ] [ j − 1 ] + 1 dp[i][j-1] + 1 dp[i][j1]+1
  3. 替换:
    I. a [ i ] = = b [ j ] a[i]==b[j] a[i]==b[j],操作次数 d p [ i − 1 ] [ j − 1 ] dp[i-1][j-1] dp[i1][j1]
    II. a [ i ] ! = b [ j ] a[i]!=b[j] a[i]!=b[j],操作次数 d p [ i − 1 ] [ j − 1 ] + 1 dp[i-1][j-1] + 1 dp[i1][j1]+1
    初始状态:
    f [ 0 ] [ i ] = i f[0][i] = i f[0][i]=i
    f [ i ] [ 0 ] = i f[i][0] = i f[i][0]=i

时间复杂度

O ( M ∗ N ) O(M*N) O(MN)

代码

#include <bits/stdc++.h>
using namespace std;

const int N = 1010;
int dp[N][N];
char a[N], b[N];

int main(){
    int n, m;
    scanf("%d%s%d%s", &n, a + 1, &m, b + 1);
    for(int i = 1; i <= m; i++) dp[0][i] = i;
    for(int i = 1; i <= n; i++) dp[i][0] = i;
      	for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++){
            dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
            if(a[i] == b[j]) dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
            else dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + 1);
        }
    printf("%d\n", dp[n][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值