Day35 LeetCode

本文介绍了如何使用数据结构实现高效的算法,包括LRU缓存机制、平均时间复杂度为O(1)的插入、访问和删除操作的容器、循环单调链表的插入、多级双向链表的展平以及循环队列的设计。通过哈希表、双端队列、链表等数据结构,实现了这些复杂操作的高效解决方案。
摘要由CSDN通过智能技术生成

1. 最近最少使用的缓存

运用所掌握的数据结构,设计和实现一个 LRU (Least Recently Used,最近最少使用) 缓存机制 。

实现 LRUCache 类:

  • LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存 。
  • int get(int key)如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value)如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

分析:

使用的哈希表+双端队列来实现。哈希表用来存储键值对并来判断key是否已经存在,双端队列用来维护每个key出现的顺序,最久未使用的数据值一直在队尾。

class LRUCache {
    HashMap<Integer, Integer> map;
    Deque<Integer> deque;
    int capacity;
    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new HashMap<>();
        deque = new LinkedList<>();
    }

    public int get(int key) {
        if (map.containsKey(key)) {
            deque.remove(key);
            deque.addFirst(key);
            return map.get(key);
        }
        return -1;
    }

    public void put(int key, int value) {
        if (map.containsKey(key)){
            deque.remove(key);
            deque.addFirst(key);
            map.put(key, value);
        }else {
            if (deque.size() >= capacity){
                int k = deque.pollLast();
                map.remove(k);


            }
            map.put(key, value);
            deque.addFirst(key);

        }

    }
}

2. 插入、随机访问和删除都是O(1)的容器

设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构:

  • insert(val):当元素 val 不存在时返回 true ,并向集合中插入该项,否则返回 false 。
  • remove(val):当元素 val 存在时返回 true ,并从集合中移除该项,否则返回 false 。
  • getRandom:随机返回现有集合中的一项。每个元素应该有 相同的概率 被返回。

分析:

哈希表+List集合。List用来存储当前结构中的值,当执行insert(val)时先在哈希表中查找是否有该val,有则返回false,没有则把val插入到list中去,并在哈希表中记录val和它的位置。执行remove时,也是先去哈希表中查找是否有该val,如果有则先获取当前list最后面的值last,再把last的值插入到原来val所在的位置,并在哈希表中更新这些内容。getRandom实现比较简单,直接生成一个随机数在[0,List.size())区间,然后返回该下标的值。

class RandomizedSet {
    HashMap<Integer, Integer> set;
    List<Integer> list;
    /** Initialize your data structure here. */
    public RandomizedSet() {
        set = new HashMap<>();
        list = new ArrayList<>();
    }

    /** Inserts a value to the set. Returns true if the set did not already contain the specified element. */
    public boolean insert(int val) {
        if (set.containsKey(val)) return false;
        set.put(val, list.size());
        list.add(val);
        return true;
    }

    /** Removes a value from the set. Returns true if the set contained the specified element. */
    public boolean remove(int val) {
        if (set.containsKey(val)){
            int idx = set.get(val);
            int value = list.get(list.size()-1);
            list.set(idx, value);
            set.put(value, idx);
            list.remove(list.size()-1);
            set.remove(val);
            return true;
        }
        return false;
    }

    /** Get a random element from the set. */
    public int getRandom() {
        Random r = new Random();
        int idx = r.nextInt(list.size());
        return list.get(idx);
    }
}

3. 排序的循环链表

给定循环单调非递减列表中的一个点,写一个函数向这个列表中插入一个新元素 insertVal ,使这个列表仍然是循环升序的。

给定的可以是这个列表中任意一个顶点的指针,并不一定是这个列表中最小元素的指针。

如果有多个满足条件的插入位置,可以选择任意一个位置插入新的值,插入后整个列表仍然保持有序。

如果列表为空(给定的节点是 null),需要创建一个循环有序列表并返回这个节点。否则。请返回原先给定的节点。

分析:

如果循环链表为空,则插入一个新节点并将新节点的 next 指针指向自身,插入新节点之后得到只有一个节点的循环链表,该循环链表一定是有序的,将插入的新节点作为新的头节点返回。

如果循环链表的头节点的next 指针指向自身,则循环链表中只有一个节点,在头节点之后插入新节点,将头节点的next 指针指向新节点,将新节点的next 指针指向头节点,此时循环链表中有两个节点且一定是有序的,返回头节点。

如果循环链表中的节点数大于 1,则需要从头节点开始遍历循环链表,寻找插入新节点的位置,使得插入新节点之后的循环链表仍然保持有序。
用 cur 和next 分别表示当前节点和下一个节点,初始时cur 位于head,next 位于head 的下一个节点,由于链表中的节点数大于 1,因此curr.next=next。遍历过程中,判断值为insertVal 的新节点是否可以在curr 和 next 之间插入,如果符合插入要求则在 curr 和next 之间插入新节点,否则将 curr 和 next 同时向后移动,直到找到插入新节点的位置或者遍历完循环链表中的所有节点。要注意insertVal小于全部节点值和大于全部节点值时的情况,还有所有值都相等时的情况。

class Solution {

    public Node insert(Node head, int insertVal) {
        if (head == null) {
            Node node = new Node(insertVal);
            node.next = node;
            return node;
        }
        if (head.next == head){
            Node node = new Node(insertVal);
            node.next = head;
            head.next = node;
            return head;
        }
        Node cur = head;
        Node next = head.next;
        Node node = new Node(insertVal);
        while (next != head){
            if (insertVal>= cur.val && insertVal<=next.val){
                cur.next = node;
                node.next = next;
                return head;
            }
            if (cur.val > next.val){
                if (insertVal> cur.val || insertVal< next.val) {
                    cur.next = node;
                    node.next = next;
                    return head;
                }
            }
            cur = cur.next;
            next = next.next;
        }
        cur.next = node;
        node.next = next;
        return head;

    }

}

4. 展平多级双向链表

多级双向链表中,除了指向下一个节点和前一个节点指针之外,它还有一个子链表指针,可能指向单独的双向链表。这些子列表也可能会有一个或多个自己的子项,依此类推,生成多级数据结构,如下面的示例所示。

给定位于列表第一级的头节点,请扁平化列表,即将这样的多级双向链表展平成普通的双向链表,使所有结点出现在单级双链表中。

在这里插入图片描述

在这里插入图片描述

分析:

DFS。当遍历到某个节点node 时,如果它的 child 成员不为空,那么我们需要将child 指向的链表结构进行扁平化,并且插入node 与node 的下一个节点之间。
因此,我们在遇到 child 成员不为空的节点时,就要先去处理 child 指向的链表结构,这就是一个「深度优先搜索」的过程。当我们完成了对child 指向的链表结构的扁平化之后,就可以「回溯」到 node 节点。
为了能够将扁平化的链表插入node 与 node 的下一个节点之间,我们需要知道扁平化的链表的最后一个节点last,随后进行如下的三步操作:

  • 将 node 与 node 的下一个节点next 断开;
  • 将node 与 child 相连;
  • 将 last 与 next 相连。
class Solution {
    public Node flatten(Node head) {
        dfs(head);
        return head;
    }

    public Node dfs(Node node) {
        Node cur = node;
        // 记录链表的最后一个节点
        Node last = null;

        while (cur != null) {
            Node next = cur.next;
            //  如果有子节点,那么首先处理子节点
            if (cur.child != null) {
                Node childLast = dfs(cur.child);

                next = cur.next;
                //  将 node 与 child 相连
                cur.next = cur.child;
                cur.child.prev = cur;

                //  如果 next 不为空,就将 last 与 next 相连
                if (next != null) {
                    childLast.next = next;
                    next.prev = childLast;
                }

                // 将 child 置为空
                cur.child = null;
                last = childLast;
            } else {
                last = cur;
            }
            cur = next;
        }
        return last;
    }
}

5. 设计循环队列

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

分析:

使用Deque类来实现。

class MyCircularQueue {
    Deque<Integer> queue;
    int k;

    public MyCircularQueue(int k) {
        queue = new LinkedList<>();
        this.k = k;

    }

    public boolean enQueue(int value) {
        if (queue.size() >= k) return false;
        queue.addLast(value);
        return true;
    }

    public boolean deQueue() {
        if (queue.size() == 0) return false;
        queue.pollFirst();
        return true;
    }

    public int Front() {
        return queue.isEmpty()?-1:queue.getFirst();
    }

    public int Rear() {
        return queue.isEmpty()?-1:queue.getLast();
    }

    public boolean isEmpty() {
        return queue.isEmpty();
    }

    public boolean isFull() {
        return queue.size() == k;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值