精准气象和海洋预测笔记二

这篇笔记探讨了如何利用CNN(卷积神经网络)模型进行精准的气象和海洋预测。提到了模型调参的重要性,包括调整CNN各层节点数量及探索不同激活函数来提升预测准确率。
摘要由CSDN通过智能技术生成

CNN模型的输入形状[N, C, H, W]
CNN:

def build_cnn(learning_rate):
    inp = tf.keras.layers.Input(shape=(48, 24, 72))
    
    x = Conv2D(48, (3, 3), activation
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值