本文源自知乎大佬:karry
AB Test 高频面试八大问-数据分析面试必刷题 (zhihu.com)
注:非原创哦,下面是看大佬视频总结的。
1.什么场景能够使用A/B实验?
1)产品迭代
界面优化、功能增加等
2)策略优化
验证策略是否达到预期目标
2.A/B实验的底层逻辑
1)随机化
使得全部的外在干扰因素失效
2)假设检验
a.提出假设:原始假设H0;备择假设H1
b.构建统计量:Z检验、T检验、F检验
c.验证假设是否成立(接受原假设/拒绝原假设)
3.AB实验在进行到中间时已经效果较为显著,可以停止实验吗?
(AB实验需要多大的样本?)
(AB实验要做多久?如何确定?)
α:弃真错误,一般取0.05
β:取伪错误,一般取0.2
Δ:指标预期变化量,μ1-μ2
σ2 :指标的方差
计算样本量3个注意事项:
1)多个试验指标时,需要用样本量最大的指标所需样本量作为整个实验的样本量
2)计算结果是每个分组最低的样本量,两个分组加在一起的样本量是需要翻倍的
3)样本量可以是一段时间累积的样本量
实验时间 = 需要样本量/每天产生样本量
4.如何选择实验城市?
1)为什么
a.有些实验可能会有负影响
b.每个城市差异较大
2)如何选择
a.尽量选择大体量的城市
b.选择不同类型城市
5.如何确定分流时机?举例
何时进行随机化:
实验分流的触发点是且只能是策略的生效点
6.AB实验数据对比上涨25%,判定为效果显著,但上线后效果不好,为什么?
1)AB实验设计是否科学
a.样本量不足
b.实验时间太短
c.实验人群不等于上线人群
2)检查外部环境
7.统计上显著,但业务觉得没有上涨,怎么解决?
统计显著:统计学概念,数据差异随机产生的难度有多大;理性
业务显著:业务判定,要求新策略上线后必须有实际的意义;感性
8.什么场景下不可用AB实验?AB实验是万能的吗?
1)用户体验制约
2)样本数量限制
3)AB组间存在干扰