【风控】ABtest的8个问题

文章讨论了A/B测试在产品迭代和策略优化中的应用,强调了随机化和假设检验的重要性。提到了实验样本量的计算、选择实验城市和分流时机的考虑。还指出,即使统计上显著,也需要结合业务意义判断效果,并列举了不适合使用A/B测试的场景。
摘要由CSDN通过智能技术生成

本文源自知乎大佬:karry

AB Test 高频面试八大问-数据分析面试必刷题 (zhihu.com)

注:非原创哦,下面是看大佬视频总结的。

1.什么场景能够使用A/B实验?

1)产品迭代

界面优化、功能增加等

2)策略优化

验证策略是否达到预期目标

2.A/B实验的底层逻辑

1)随机化

使得全部的外在干扰因素失效

2)假设检验

a.提出假设:原始假设H0;备择假设H1

b.构建统计量:Z检验、T检验、F检验

c.验证假设是否成立(接受原假设/拒绝原假设)

3.AB实验在进行到中间时已经效果较为显著,可以停止实验吗?

(AB实验需要多大的样本?)

(AB实验要做多久?如何确定?)

α:弃真错误,一般取0.05

β:取伪错误,一般取0.2

Δ:指标预期变化量,μ1-μ2

σ2 :指标的方差

计算样本量3个注意事项:

1)多个试验指标时,需要用样本量最大的指标所需样本量作为整个实验的样本量

2)计算结果是每个分组最低的样本量,两个分组加在一起的样本量是需要翻倍的

3)样本量可以是一段时间累积的样本量

实验时间 = 需要样本量/每天产生样本量

4.如何选择实验城市?

1)为什么

a.有些实验可能会有负影响

b.每个城市差异较大

2)如何选择

a.尽量选择大体量的城市

b.选择不同类型城市

5.如何确定分流时机?举例

何时进行随机化:

实验分流的触发点是且只能是策略的生效点

6.AB实验数据对比上涨25%,判定为效果显著,但上线后效果不好,为什么?

1)AB实验设计是否科学

a.样本量不足

b.实验时间太短

c.实验人群不等于上线人群

2)检查外部环境

7.统计上显著,但业务觉得没有上涨,怎么解决?

统计显著:统计学概念,数据差异随机产生的难度有多大;理性

业务显著:业务判定,要求新策略上线后必须有实际的意义;感性

8.什么场景下不可用AB实验?AB实验是万能的吗?

1)用户体验制约

2)样本数量限制

3)AB组间存在干扰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值