番茄风控
码龄3年
  • 250,260
    被访问
  • 333
    原创
  • 4,929
    排名
  • 502
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2019-08-19
博客简介:

weixin_45545159的博客

查看详细资料
  • 6
    领奖
    总分 1,909 当月 183
个人成就
  • 获得64次点赞
  • 内容获得66次评论
  • 获得773次收藏
创作历程
  • 81篇
    2022年
  • 156篇
    2021年
  • 25篇
    2020年
  • 72篇
    2019年
成就勋章
TA的专栏
  • 番茄风控大数据公众号
    319篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    scikit-learn回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《基于二代征信的信用模型与策略的使用与监控》(视频版 )

发布视频 5 小时前

信贷多头数据的维度介绍与风控应用

在金融信贷领域中,数据是风控体系的最核心元素,无论是策略规则的开发,还是评分模型的建立,都是围绕众多维度数据进行搭建的。在常用数据的系列体系中,多头数据是一类应用价值比较大的维度,在信贷风险识别、用户群体分类等方面具有非常好的效果。多头数据具体是指多头借贷数据(Multiplatform Loan Data), 反映了借款人在两家及以上机构申请借贷的行为,在实际业务中也可以称为多头负债数据。因此,通过用户的多头数据,可以很直观地判断用户后期还款能力的高低,除了欺诈特殊情况外,借款人的申请机构数或借贷金额越
原创
发布博客 5 小时前 ·
8 阅读 ·
0 点赞 ·
0 评论

贷后内容分享|回收目标拆解

在贷后部门中,最重要的任务就是协助公司催回欠款,经常提到的就是背回收率指标。那管理员者,该如何设计一套比较公平的指标,且能在一定程度是让催收部门的童鞋努努力就能达到(合理),本文我们来就回收目标的制度讲讲我们的思路。当然不仅仅是思路,这里还有配套的数据,协助大家理解。首先在讲解前,建议先阅读这里:贷后相关指标(免得这里所提的指标大家恍如听天书),参考如下:在做具体的贷后目标回收率的制定上,我们需要完成以下几步:1.以不同的逾期资产来拆分不同的逾期回收2.在不同分层的逾期数据中,叠加上目前正处于
原创
发布博客 前天 21:34 ·
34 阅读 ·
0 点赞 ·
0 评论

一份贷后实务内容:催收策略与失联模型定义

在信贷业务的逾期管理体系中,逾期催收策略的制定与实践,是直接关系到催收效益好坏的重要内容。在实际业务场景中,逾期催收策略是根据信贷用户的逾期账期、逾期余额、模型评分、客群特征等方面,来制定具体的催收规则,如图1所示为信贷逾期客户管理的主要结构。​图1 逾期信贷管理1、逾期管理分析(1)逾期账期针对逾期账期维度,根据客户的逾期时长可以分为低账龄、中账龄、高账龄三个类别。对低账龄客户可以采用短信、邮件、微信、电话等以提醒为主的催收方式;对中账龄客户主要采取以电话施压为主提高催收强度的方式;对高账龄客户
原创
发布博客 2022.05.20 ·
121 阅读 ·
0 点赞 ·
0 评论

关于资产分池ABS等金融衍生品内容来袭

资产证券化是目前市场上较为火热的话题,现在国内通用的一个说法一般是ABS,泛指除资产支持票据ABN之外,一切的结构化产品。其跟国外狭义上的ABS产品还是有一定的差异的。国外狭义的ABS一般是指车贷、卡贷、个人消费贷等等,以这些资产为基础支持发行的一些证券。ABS其实是一个舶来品,起源于美国上世纪60年代,当时二战结束以后,美国人口激增,购房需求也上行,当时给居民发放房贷的储贷协会出现了这样一个危机,房贷资产的短期存款很难以支撑当时长期利率,为了应对这一困境,当时储贷协会也想了一些其他的办法,比方是说发行短
原创
发布博客 2022.05.20 ·
7 阅读 ·
0 点赞 ·
0 评论

风控误区:拒绝推论不仅仅存在于贷前环节

在金融信贷场景的风控体系中,贷前环节往往是通过策略或模型的“决策”动作进行风险防范的,但不论是欺诈识别,还是信用评估,或者是精准营销等,通过风控系统对不同用户群体的“决策”审批,自然会产生“通过”和“拒绝”的结果。所以在以上这些反欺诈与贷中等场景同样存在拒绝推论。上次我们番茄星球课堂给大家带来了一次主题为“信贷风控拒绝演绎实战”的直播课,内容充实,全程干货,具体讲解了拒绝推论的业务场景、解决方案、算法原理等,并结合具体的样本数据案例,详细介绍了各种方法的实现步骤,最后同步概况了拒绝推论模型应用效果的验证思
原创
发布博客 2022.05.19 ·
86 阅读 ·
0 点赞 ·
0 评论

《逾期账款催收管理》(视频版 )

发布视频 2022.05.18

数据分析师的必备能力—样本数据异常值识别的4种经典方法

对于从事数据分析岗位的小伙伴,日常工作中可能会接触到很多类型的维度数据,而在开展任务的具体实践过程中,需要我们只有具备较好的数据分析能力,才能根据实际业务需求得到有价值的分析结果。在包括业务熟悉、数据理解、逻辑思维等能力的范围内,掌握数据分析的常见算法,是我们必须要掌握的工作能力,例如数据清洗处理、特征加工分析等。在模型开发过程中,针对建模数据的预处理过程是一项必备环节,数据预处理主要包括缺失值处理、异常值处理、重复值处理等,其目的都是为了获取一份比较完整且合理的样本数据,从而有效支持模型的拟合训练与测试
原创
发布博客 2022.05.18 ·
39 阅读 ·
0 点赞 ·
0 评论

信用评估与违约预测的模型性能调优—决策树集成学习应用

在信贷风控场景中,贷前模型的应用对于申请用户的风险防范发挥着重要作用,例如信用评估、欺诈识别、违约预测等。模型的建立过程,必然需要某种机器学习算法来实现,而常用的算法包括逻辑回归、随机森林、XGBoost、LightGBM等,具体采用何种方法较为合适都需要根据建模样本与实际需求而定。但是,无论选取哪类算法,模型最终性能的认可往往不是一步到位的,是在模型训练阶段需要对模型参数经过多次调整优化,并通过模型效果对比选定表现相对较好的模型。本文从数据建模的实践经验出发,以集成学习决策树算法建立信用评估或违约预测模型
原创
发布博客 2022.05.17 ·
97 阅读 ·
0 点赞 ·
0 评论

手把手系列|最全的特征编码与风控提能——模型童鞋必会风控同学应知

序言:在风控模型开流程中,使用的场景分别有A卡、B卡、C卡等模型,常规使用最多的就是逻辑回归算法。使用逻辑回归算法80%会使用的编码方式就是WOE编码,相信做模型的同学对这种编码方式非常熟悉。做WOE的编码的好处,无需多言,比如可解释性强,对于极端值还不需做处理,但在除逻辑回归的其它场景中是否也能使用这种编码方式?另外模型场景中还有哪些其它的编码方式?还有WOE是否可以提升集成算法的效果?关于这些问题,本文,番茄风控给各位读者带来模型的编码方式汇总,且在集成算法中运用woe编码可以进一步提升模型的准确性
原创
发布博客 2022.05.16 ·
39 阅读 ·
0 点赞 ·
0 评论

如何进行反欺诈风控模型冷启动

在金融反欺诈风控业务场景下,由于欺诈风险的类型较为复杂且多变,因此常常会在样本数据的好坏标签严重不足,甚至是标签缺失的情况下进行模型开发工作,这种现象被称为模型冷启动。本文将结合实际业务场景,给大家介绍下反欺诈风控模型冷启动的思想与方法。1、冷启动建模背景在正式介绍冷启动的建模方案之前,先简单梳理下常规情况的金融风控建模流程,具体步骤如下:(1)定义明确的因变量Y,即好坏标签;(2)根据建模数据划分训练数据集、验证数据集和测试数据集,其中测试数据集和训练、验证数据集的采样时间段不同;(3)自变量特
原创
发布博客 2022.05.15 ·
74 阅读 ·
0 点赞 ·
0 评论

实操|特征变量多重共线性的分析与检验(含代码)

对于Linear回归、Logistic回归等线性模型来讲,特征变量的多重共线性是衡量模型性能的一个重要维度。因此,如何有效识别并解决模型特征的多重共线性问题,是实际业务场景建立线性模型过程的必要环节。本文首先对特征多重共线性的定义进行描述,然后结合实际样例重点介绍多重共线性的常用检验方法。1、多重共线性定义对于多元线性模型Y=k0+k1X1+k2X2+…+knXn,如果特征变量X1、X2、Xn之间存在高度线性相关关系,则称为多重共线性。从特征共线性程度的大小进行区分,可以分为完全共线性和近似共线性。
原创
发布博客 2022.05.13 ·
63 阅读 ·
0 点赞 ·
0 评论

实战|信贷风控拒绝演绎(推断)

在金融信贷场景的风控体系中,贷前环节往往是通过策略或模型的“决策”动作进行风险防范的,无论是反欺诈,还是信用评估,或者是精准营销等。对于风控系统,有了“决策”审批,自然会有“通过”和“拒绝”的结果。例如,当申请用户触发反欺诈规则会直接拒绝,否则会正常通过;当申请用户触发信用风险模型的阈值会直接拒绝,否则会正常通过等。在贷前风控的决策过程中,申请信用评分卡模型(A卡)应用非常广泛,在信贷产品业务的很多环节发挥着极为重要的作用,包括风险识别、产品定价、客户分群等方面。A卡模型的构建是一类有监督模型,即根据存量
原创
发布博客 2022.05.12 ·
227 阅读 ·
0 点赞 ·
0 评论

风控人都在夸交通出行数据好用,那就来看看如何挖掘与应用此类数据

在个人C端信贷产品的业务体系中,特征数据维度较多且应用价值较高,常见的有人行征信、电商消费、银联交易、多头借贷、设备安装、社交行为等,这些维度的数据无论是针对策略模型的风控环节,还是面向客户画像的营销场景,都贡献着较大的信息价值,发挥着非常重要的作用。本文将给大家介绍一类相对较为特殊,但应用价值较大的维度数据,即出行数据,具体内容主要从特征标签类型及其贷风控应用进行重点描述。本次展示内容以铁路出行数据作为示例,向大家说明相关标签的挖掘与应用。铁路出行数据的信息较为敏感,因此在数据应用过程中与银联、运营商等
原创
发布博客 2022.05.11 ·
62 阅读 ·
0 点赞 ·
0 评论

特征编码在风控建模中的应用(上篇)—WOE是否可以提升集成算法效果?

序言:在风控模型开流程中,使用的场景分别有A卡、B卡、C卡等模型,常规使用最多的就是逻辑回归算法。使用逻辑回归算法80%会使用的编码方式就是WOE编码,相信做模型的同学对这种编码方式非常熟悉。做WOE的编码的好处,无需多言,比如可解释性强,对于极端值还不需做处理,但在除逻辑回归的其它场景中是否也能使用这种编码方式?另外模型场景中还有哪些其它的编码方式?还有WOE是否可以提升集成算法的效果?关于这些问题,本文,番茄风控给各位读者带来模型的编码方式汇总,且在集成算法中运用woe编码可以进一步提升模型的准确性
原创
发布博客 2022.05.09 ·
264 阅读 ·
0 点赞 ·
0 评论

近期的热点风险事件都与这些内容相关

今天是母亲节,您辛苦了!愿妈妈们被岁月温柔以待图片2022年青山伦镍事件,上演了一出《生死时速》大片,国际金融市场的猎杀、逼仓、巨亏等戏码,作为普通吃瓜群众可能只是当成饭后茶余的谈资,但其背后蕴藏着的的市场风险却让每一位市场参与者都感到背后发凉。而这其实也倒逼着我们每一个人(作为以风险为关注的风控人而言,这些意味就更多了些),要多多少少了解点市场风险、学习下金融衍生品的知识。一.什么是市场风险?市场风险,是指因市场价格(利率、汇率、股票价格和商品价格)的不利变动而发生损失的风险。市场风险可分为:(.
原创
发布博客 2022.05.08 ·
679 阅读 ·
0 点赞 ·
0 评论

聚类、缺失处理、特征分析——模型几个重要的处理过程(含案例实操)

在数据建模过程中,尤其是通过线性回归、逻辑回归等传统机器学习算法进行模型训练之前,往往需要对样本数据进行清洗,其中缺失值处理是一种常用方法。根据特征的类别属性与缺失特点,采用合适的方法进行缺失处理,可以有效提升模型拟合的效果,甚至在某些场景下,缺失值处理是作为模型拟合样本的前提步骤。对于缺失值的处理方式,从难易程度可以分为“简单”和“复杂”两个方面,“简单”主要是指根据常用的统计指标进行缺失值填充,例如平均值、最大值、最小值、众数、中位数等;“复杂”主要是结合相关算法进行处理,例如极大似然估计、贝叶斯估计
原创
发布博客 2022.05.07 ·
281 阅读 ·
0 点赞 ·
0 评论

《风险人必学的资产分析-坏账预估》(视频版 )

发布视频 2022.05.06

《决策引擎的决策流层次及策略架构设计》(视频版 )

发布视频 2022.05.05

智能推荐系统在企业金融服务平台的应用

智能推荐系统是机器学习一个非常重要的领域,在金融、电商等营销场景中应用较为广泛,并展现出了重要的商业价值。智能推荐系统属于非监督式学习,具体是通过分析产品用户的浏览次数、停留时长、点击频率等数据指标,挖掘出用户感兴趣的内容或商品,然后进行有方向的个性化推荐。如果推荐的内容或商品能够高效匹配用户的需求,就可以优化用户对产品的使用体验,提高用户与产品之间的黏性,从而为整个业务创造较好的收益。1、算法原理本文主要以中小微企业金融服务平台产品为例,说明智能推荐系统在产品智能匹配环节的应用。在具体介绍场景之前,我
原创
发布博客 2022.05.05 ·
510 阅读 ·
0 点赞 ·
0 评论
加载更多