RuntimeError: Unable to find a valid cuDNN algorithm to run convolution

本文讲述了在使用yolov5l模型训练时遇到的CUDA内存不足问题,通过调整batch_size为16以解决RuntimeError,并强调了模型深度和通道数对GPU资源需求的影响,提供了根据GPU使用情况调整batch-size的方法以提高训练效率。
摘要由CSDN通过智能技术生成

使用yolov5l模型训练时出现报错,但是昨天使用yolov5s模型时是可以正常训练的。

RuntimeError: Unable to find a valid cuDNN algorithm to run convolution

发生报错的原因是gpu内存占用过高,terminal输入nvidia-smi查看gpu的使用情况。

 

我们需要把bach_size调小,一般建议是8的倍数,内存不够用时尽量调低,此处我设置成了16。

 parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')

结果运行正常。

使用yolov5模型时,s和n模型的深度和通道层数都比较小,batch-size设置的稍大一些,gpu可以跑的动,但使用l和x模型跑的时候就不一定可以跑的动了。使用指令nvidia-smi,根据gpu的使用情况调整batch-size的大小,尽量缩短每次训练模型的时间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值