Java如何实现【归并排序】?

本文深入探讨了归并排序算法,它通过分治策略实现排序,保持稳定性并达到O(N*logN)的时间复杂度。归并排序的秘诀在于左右区域的有序合并,利用辅助数组确保相同元素的相对顺序不变,从而保证稳定性。代码示例展示了这一过程,同时解释了为何归并排序在效率上的优越性。了解并掌握这一重要算法对于提升编程技能至关重要。
摘要由CSDN通过智能技术生成

盖言之: 整体就是一个简单递归,左边排序好,右边排序好,让其整体有序,让其整体有序是用外排序
特点: 一种较快稳定的排序

时间复杂度: O(N*logN),可用master公式计算
空间复杂度: O(N),因为会用到一个help辅助空间
稳定性: 稳定

重要性: 很重要,必掌握

编写难度: medium
其他:

  • 归并排序快的原因:并没有浪费比较行为
  • 稳定性的原因:左区域优先(详情见注释)

代码示梨:(注释有宝贝)

public static void mergeSort(int []arr){
	if(arr == null||arr.length < 2){
		return ;
	}
	process(arr,0,arr.length - 1);
}
public static void process(int []arr,int L,int R){//功能:使L~R这个范围里的排序好
	if(L == R){
		return ;
	}
	int mid = L + ((R - L) >> 1);
	process(arr,L,mid);
	process(arr,mid + 1,R);
	merge(arr,L,mid,R);
}

public static void merge(int []arr,int L,int M,int R){
	int []help = new int[R - L - 1];//辅助空间,谁小就会被拷贝进这个数组
	int index = 0;
	int p1 = L;//指着左区域第一个,之后往右走
	int p2 = M + 1;//指着右区域第一个,之后往右走
	while(p1 <= M&&p2 <= R){//如果两个指针都不越界
		help[index++] = arr[p1] <= arr[p2] ? arr[p1++]:arr[p2++];//这里发生了两件事,1丢数2移动。两指针都往右走,能把部分数据排序并填到辅助数组的。而且,这个是经典的归并排序,所以当两指针的相同时左边的数据会被优先丢入进辅助数组,也因为这个操作保障了这个排序具有稳定性,假如你改成arr[p1]>[p1],那么就是把相同时,把右区域的值优先丢入辅助数组,会破坏稳定性
	}
	//因为上一步操作只是考虑了一部分数据,还有一部分数据没有处理。其实当一边的数据处理好了之后,另一边的数据本身是有序的,我们直接复制出来即可
	while(p1 <= M){//看是不是左区域还有数据
		help[index++] = arr[p1++];
	}
	while(p2 <= R){//看是不是右区域还有数据
		help[index++] = arr[p2++];
	}
	for(int i = 0;i < help.lenght;i++){//把辅助空间里的数据归还给原数组
		arr[L + i] = help[i];
	}
}

如果你觉得该文章不错,不妨
1:点赞,让更多人也能看到这篇文章
2:关注我,让我们成为长期关系(doge)

评论留言会看,欢迎大家积极评论指导~

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值