pytorch Torch device的基本用法

本文介绍了PyTorch中设备管理的基础用法,包括默认设备、CPU与GPU的指定、GPU数量的检查、设备名称的获取以及GPU是否可用的判断。示例展示了如何创建Tensor并指定其在CPU或GPU上运行,以及如何获取系统中GPU的详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Torch device的基本用法

print("Default Device:{}".format(torch.Tensor([4,5,6]).device))

device = torch.Tensor([1,2,3],device="cpu:0").device
print(device)

cpu1 = torch.device("cpu:0")  # 标注指定为cpu
print(cpu1)

gpu = torch.device(0)   # 直接指定为gpu,不需要声明
print(gpu.type)

gpu = torch.device("cuda:0")  # 指定哪块gpu
print(gpu)

print("Torch GPU Count:{}".format(torch.cuda.device_count()))    # 获取可用GPU设备数量

print("Torch CPU Count:{}".format(torch.cuda.os.cpu_count()))    # 获取可用CPU设备数量

print(torch.cuda.get_device_name(torch.device("cuda:0")))     # 获得GPU设备名称

print(torch.cuda.is_available())      # GPU设备是否可用
-----------------------------------------------------------------------------
result:
Default Device:cpu
cpu
cpu:0
cuda
cuda:0
Torch GPU Count:1
Torch CPU Count:16
GeForce RTX 2060
True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值