2020-08-05 第一节课:计算机组成及工作原理

一、计算机的基本概念

1.1 什么是计算机

  • 计算机(computer)俗称电脑,是现代一种用于高速计算的电子计算器。
    • 数值计算
    • 存储记忆功能
    • 逻辑计算功能

1.2 计算机的组成

  • 硬件:鼠标,键盘、显示器、cpu、内存、硬盘。
  • 软件:类似于qq、微信、浏览器,等等。
    软件就是通过完成一个一系列的特定顺序的计算机数据和特定指令的集合。

二、计算机语言

  • 2.1 作用:人与计算机进行通讯的语言,
  • 发展:机器语言(1/0)→汇编语言→高级计算机语言
    高级计算机语言包括:C、C++、Jave、Python等
  • 2.2 不同的语言根据时机的不同而区分:
    • 2.2.1、编译性语言: C 在交给机器执行之前已经完成了编译。优点:执行快。 缺点:跨平台差。
    • 2.2.2、解释性言语: python 一遍解释一遍执行,优点:跨平台好 ; 缺点:执行慢。
      • 1/2以涮牛肉为例,编译性语言就相当于一盘牛肉直接倒进火锅,虽然熟得快但是只能选的一种辣的那边湖或者不辣的那边;解释性语言相当于一片片涮着吃,虽然慢,但是可以一片选择涮辣的,一片选的不涮不辣的

三、交互方式

  • 分类
    tui:通过cmd这类,文字对话交互
    gui:通过软件这类,如360管家对话交互
  • DOS命令
命令作用
dir列出当前目录下的文件夹或者文件
md创建目录
rd删除目录
cd进入指定目录
cd…返回上一级目录
cd/退回到根目录
del删除文件
exit退出dos命令

注意:rd不能删除有文件的文件夹

四、文本文件和字符集

4.1、文本文件的类型

  • 分类
    4.1.1 纯文本 只能保存单一的文本内容,无法保存内容无关的东西;
    4.1.2富文本 可以保存文本以外的东西。

4.2、 字符集

  • 字符集就是一个编码解码的参照物。即编码过程→密码本→解码过程
  • ASCLL 美国人 8位数 256个字符
  • ISO-8859-1 欧洲人 9位数 512个字符
  • GBK 国标码
  • Unicode 万国马 utf-8(支持的数位最多,用的最多) utf-16 utf-32

五、进制

  • 原理:

  • 5.1十进制----》 二进制 对整数进行除2的操作
    在这里插入图片描述

    • 如图所示以52为例,52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制就是110100。
    • 值得注意的是,由于计算机内部表示的字节单位都是定长的,以2的幂次展开,或者8位,或者16位。。。。。。
      所以一个二进制用计算机表示时,位数不足2的幂次时,高位上要补足若干个0.即,(52)10 = (00110100)2
  • 5.1.1拓展知识1:负整数转化为二进制。

    • 要点:取反加一。
    • 解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对去不后的结果加一。
    • 例,依旧 以-52换算
      a、先取得52的进制为:00110100
      b、对其所取得的二进制取反:11001011(取反就是1变成0,0变成1)
      c、将取反后的数值加一即可:11001100(0001加1之后变为0010逢2进1)
      即:(-52)10 = (11001100)2
  • 5.1.2拓展知识2:小数转换为二进制

    • 要点:乘二取整,正序排列。
    • 解释:对被转换的小数乘以2,取其整数部分(1或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制的小数部分,然后取小数部分,再乘以2,直接得到小数部分为0或者已经去到了足够位数,每次取得整数部分,俺小猴次序排列,就构成了二进制小数的序列。
    • 例:把0.25转化为2进制,转换过程如下:
      0.252 = 0.5 …0
      0.5
      2 = 1.0 …1
      即(0.25)10 = (0.0100)2
      • 注意小数位的十位数转换为二进制并不一样能精准表示,如(0.4)10转换而二进制之后发现是一个0.0011的无限循环。
      • 以上所述参考文件:http://www.360doc.com/content/11/0308/14/5327079_99222581.shtml
  • 5.2二进制----》 十进制 二进制乘以2次幂的过程:

    • 例如:将110转化为十进制:
    • 首先补齐位数,00000110,首位为0则为整数,那么将二进制中的三位数,进行如下计(从最后一位往前开始算,最后一位为0次幂):
    • 个位数0与20 相乘:0*20=0
    • 十位数1与21相乘:1*21 = 2
    • 百位数1与22相乘:1*22 = 4
    • 得到的结果为:0+2+4=6
    • 即(00000110)2 = (6)10
  • 5.2.1拓展知识1:负整数二进制转化为十进制:

    • 如果补足位数后首位位1,那么对其对应的整数为负,那么需要先取反然后再划算。
      例:111110001,首位为1,那么需要先对其取反,即-00000110; 00000110,对应的十进制为6,因此11111001对应十进制为-6换算公式可以表示为:
    • 11111001 = -00000110 = -6
  • 5.2.2拓展知识2:小数二进制转化为十进制:
    如果将二进制0.110转换为十进制:
    将二进制中的三位数分别如下计算(从小数后第一位开始算,首位为-1次幂):

    • 个位数0与20 相乘:0*2-1=0.5
    • 十位数1与21相乘:1*2-2 = 0.25
    • 百位数1与22相乘:0*2-3 = 0
    • 所得结果为0.5+0.25+0=0.75
      • 即(0.110)2 = (0.75)10
    • 以上所述参考文件:http://www.360doc.com/content/11/0308/14/5327079_99222581.shtml
  • 十六进制同二进制十进制的转换,以及32进制的概念周末查阅资料之后再做笔记

  • 5.2数据的换算

  • bit是计算机中最小的单位

  • byte使我们最小的可操作的单位

  • 8bit = 1byte(字节)

  • 1024byte = 1KB(千字节)

  • 1024KB = 1MB(兆字节)

  • 1024MB = 1GB(吉字节)

  • 1024GB = 1TB(太字节)

六、环境变量

  • 点击我的电脑→右击此电脑→高级系统设置→环境变量

七、承接8.3课程新增知识点

  • (8.5新增知识点)
    a = [4]
    b = [4]
    这个时候a和b的id是不一样的,因为[4]是一个列表类型
  • a = [1,2,3]
    b = [1,2,3,a]
a = 1+2 b = 1+2 中a和b的id一样的问题,后期变量课程中会讲到 注意
  • (8.5新增知识点)
  • 以上新增知识点以与上一篇博客修订添加
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值