这里写自定义目录标题
AI无疑是今年最火的词,但每当我们谈论AI时,总会听到一串让人摸不着头脑的术语,比如 “神经网络” 、“Transformer” 、“Agent”……
这些词到底意味着什么?
AI真的能像传闻中那样,给世界带来颠覆性的变革吗?
本期视频,我们将在20分钟内,分10层理解,带你深入剖析AI的意义。
一、人工智能
Artificial Intelligence,这就是AI最表层的含义。
虽然AI近几年才进入大众视野,但实际上,“人工智能”这个概念早在1956年就已被提出。
要知道,我们中学历史课本里提到的**“人类第一台计算机”——埃尼亚克(ENIAC),那个占地170平方米,重量超过30吨的庞然大物**,是1946年才被造出来的。
也就是说,人类发明通用计算机才10年,就已经开始畅想创造智能了!
这无异于你刚拿到一支刚被发明出来的手枪,就幻想有一天能一发子弹快递到大洋彼岸!
虽然技术受限,但科学家的想象力却是无限的。
人类擅长向大自然“抄作业”,所以我们很自然地想到,既然大脑能诞生智慧,那我们是不是也可以模拟大脑,造出智能?
二、神经网络
提到AI,**“神经网络”**无疑是最常见的词之一。
你或许在各种文章和报道中见过这个词,感觉它很牛,但又似懂非懂——神经网络到底是什么?
你的直觉是对的,神经网络,本质上就是用计算机去模拟人类大脑的工作方式。
那具体怎么模仿呢?
如果你能理解这一层的内容,那其实你就掌握了AI的底层原理。
我们可以简单地把大脑理解成一个由几百亿个神经元构成的复杂网络。
每个神经元只是进行简单的输入—输出计算,但这些微小的计算单元结合在一起,就组成了一个能思考、能决策、甚至能纠结午饭吃什么的聪明大脑。
既然大脑的智慧来源于庞大的神经元网络,那我们只需要让计算机模拟这种神经元连接,不就能创造出“人工大脑”了吗?
所以,简单来说,神经网络由“输入层”获取信息,经过多个“隐藏层”计算,最终由“输出层”得出结果。
在这个隐藏层里,所有计算都是通过“矩阵”完成的。
矩阵上的每一个数字,就是一个“神经元”。
AI通过矩阵计算和结果对比,观察误差,调整神经元的权重,不断优化答案。
这就像你在学做饭时,每次尝试后调整用料,直到味道越来越接近完美。
所有的AI底层,归根结底都是“矩阵计算”!
而针对不同的数据类型,神经网络衍生出了不同的模型,比如用于图像处理的CNN,处理时间序列数据的RNN,以及用于图数据库的GNN。
终于,AI有了一条通往智能的道路。
然而,通用人工智能的发展仍然卡在了瓶颈。
直到——
一篇颠覆性的论文横空出世……
三、Transformer
如果你经常关注AI的新闻,你一定见过“Transformer”这个词。
它其实只是神经网络中的一种计算方法,但由于它太重要了,必须单独拎出来讲。
前面我们提到,神经网络依赖梯度求导来调整参数,这意味着网络需要通过不断的反馈优化自己。然而,当矩阵规模变得极其庞大时,你或许会疑惑:这么大的矩阵,求导真的不会出问题吗?
你的直觉是对的。
当参数变得足够多时,一个微小的扰动就可能导致计算结果发生巨大变化,类似于**“蝴蝶效应”。
这个过程中,AI可能会遇到两大灾难:梯度消失(参数更新太慢,模型学不会东西)或者梯度爆炸**(参数剧烈变化,导致模型崩溃)。
这一切问题,直到 Transformer 出现才被彻底解决。
Transformer到底是什么?
你可能会疑惑:啥?AI怎么和《变形金刚》扯上关系了?
别急,这个名字还真有几分道理。
Transformer在数学上解决了神经网络的计算难题。
它的核心思想是把一个大矩阵拆分成多个小矩阵,让它们可以单独进行计算。
换句话说,原本需要串行计算的庞大矩阵,现在可以同时进行多路计算,从而大幅提高效率,避免梯度消失或爆炸的问题。
学过线性代数的朋友应该知道,如果两个矩阵的维度不匹配,是无法直接进行点积运算的。
而Transformer的本质,就是通过“变形”(transform),让矩阵可以进行高效计算。
所以,它真的可以说是神经网络中的“变形金刚”!
链式求导的“蝴蝶效应”就这样被解决了。
所以它叫 Transformer,这个名字还真是贴切。
一个时代的变革
顺便提一嘴,前一阵子又有一篇重磅论文,提出了一种KAN网络,据说可以用更少的数据实现高效训练。或许,它又会成为下一个改变AI格局的技术浪潮。
回到Transformer。
2017年,谷歌发布了一篇震惊业界的论文,彻底改变了AI的发展轨迹。
正如有人调侃道:
“天不生我Transformer,AI万古如长夜!”
但令人意外的是,这个划时代的突破,并没有立刻掀起狂潮。
谷歌的论文和专利太多了,他们并没有特别重视这个模型,当然也不是不重视,而是……孩子太多了,谁都很重视。
于是,这项技术被短暂搁置……
直到——2018年,AI领域迎来了真正的革命性突破。
四、大模型
聪明的你一定会有一个疑问:
既然“卷积神经网络”早已被发明出来,为什么AI直到2023年才真正火起来?
答案很简单——以前的模型,不够大!
时间回到2015年
科技界的三位大咖——山姆·奥特曼、彼得·蒂尔、马斯克(没错,又是这个男人),联手创立了一家非营利AI组织——OpenAI。
到了2018年,OpenAI的研究团队发现了谷歌的Transformer论文,他们的第一反应是:不得了啊!
于是,OpenAI迅速将Transformer作为核心架构,着手开发ChatGPT。
OpenAI的策略很简单,也很暴力——“大”!
他们疯狂地堆参数、扩大数据集、提升计算能力,坚信只要模型足够大,总会发生某种神奇的质变。
大模型,就像烧水
99度之前,怎么烧都不会开,但到了100度,水就沸腾了!
从2018年到2022年,OpenAI不断扩大模型规模,参数越来越多,训练数据越来越庞大。
最终,AI突破了某个临界点,迎来了性能的爆发性提升,ChatGPT横空出世。
这就是“大模型”命名的由来——它是规模突破带来的智力飞跃!
OpenAI的缩放定律
但OpenAI并没有盲目扩大模型,他们在实验中发现了一个惊人的规律——AI的能力增长,遵循特定的数学法则,这就是**“缩放定律”(Scaling Laws)**。
缩放定律的核心结论:
当模型参数、计算量和数据量按特定比例增长时,AI的性能提升是可预测的,并且会遵循幂律关系。也就是说,增加10倍的计算资源,模型的误差会按照某种固定比例减少。
这个发现非常重要!
它让AI研究者意识到,智能的提升不仅仅取决于算法优化,更在于模型的规模。换句话说,只要计算能力足够强,数据足够多,AI就能越来越聪明。
那是不是越大越好?
很多人会问:
既然“大”是关键,那我们是不是只要不断增加参数,就能让AI变得更聪明?
其实并不是。
大模型的能力增长,并不是线性递增的,而是一个“临界点”现象。
在某个点之前,无论如何扩展模型,性能提升都十分有限;但一旦突破这个点,AI能力会突然跃迁,变得更聪明、更通用。
而OpenAI,恰好是第一个冲破这道门槛的公司。
五、暴力破解器
随着模型的变大,人们发现规模可以直接破解很多问题。
这东西就像是打游戏里的作弊器,武侠里的独孤九剑,台球里的大力出奇迹——
不管问题多复杂,我只有一招:暴力硬拆!
只要模型够大、算力够强、语料够多,一切都能被破解!
从“人工智障”到“自己学会”
过去,人们对AI的训练方式就像教小朋友学语言——
先教基础语法规则,然后让AI去解题。
这样做的结果就是,AI经常答非所问,甚至出现令人哭笑不得的回答——这就是**“人工智障”时代**。
但在Transformer + 大模型的加持下,AI不再需要预设规则,而是自己去学习。
它像一个不断进化的生物,开始理解语言,甚至能推理逻辑,表达越来越清晰、流畅。
大力出奇迹,AI直接学会翻译
以前,AI翻译是一个独立的研究领域,研究者需要精心设计各种语法规则,让AI理解句子结构。
但现在,大模型靠着暴力堆料,自己就学会了翻译。
这意味着什么?
这意味着这个领域的研究人员,直接被AI干掉了。
曾经需要成百上千名工程师优化的翻译系统,如今只是大模型的“副产品”——AI自己就能掌握多种语言,并且翻译质量已经超过了许多人类翻译者。
AI挑战人类智慧
这股“暴力破解”的趋势,已经在各个领域掀起风暴:
- 2018年,AlphaGo战胜围棋天才柯洁,宣告AI彻底攻克围棋领域,碾压人类棋手。
- 2019年,AlphaStar在**《星际争霸》**比赛中战胜世界冠军,展示出AI在即时战略游戏中的决策能力。
- 2023年,谷歌推出AlphaFold3,它能预测所有生命分子的结构,蛋白质结构预测的准确率比上一代提升了50%,这让生物医药研究进入了全新的时代。
暴力破解器的局限
当然,这个“作弊器”并不是万能的。
比如,在蛋白质结构预测中,尽管AI的精度已经很高,但仍然无法完全替代实验室研究。
并且,这种**“暴力破解”的方法,主要适用于数据驱动的问题**,而在需要创造性、灵活推理的任务上,AI依然有很多限制。
但即便如此,我们手中已经握有一个“作弊器”,或者说一个“小bug”——
从基础科学到科研应用,再到日常生活,仍然有无数的领域等待AI去破解。
这场**“暴力破解”的革命**,才刚刚开始!
六、Agent:智能体革命
回到这个能和你聊天的大模型,你或许会问:
为什么各大科技巨头都在疯狂投资这个领域?它到底有多大的商业价值?
答案就在这一个词:Agent。
最近两年的AI投资圈,几乎“10个项目,9个Agent”!
什么是Agent?
Agent,直译过来是“代理”,但在AI领域,它更常被称为**“智能体”**。
它的核心概念是——能够在特定环境中自主运行并执行任务的AI。
换句话说,Agent不只是一个工具,而是可以独立完成工作的AI助手。
它不再是“被动回答问题”的ChatGPT,而是能主动理解任务、规划步骤、执行指令,甚至与其他AI协作的智能体。
这意味着,Agent可以在工作环境中部分甚至完全替代人类。
Agent正在改变工作方式
举几个现实的例子:
-
数据分析:你需要做一个数据报告?
只需把数据交给AI,它就能自动分析,整理成完整的PPT,包括数据可视化、图表、关键洞察,甚至还能用通俗易懂的语言总结核心结论。 -
论文写作:你需要写一篇学术论文?
输入研究方向和实验数据,AI就能自动检索引用文献,撰写论文初稿,甚至优化逻辑结构,让文章更具说服力。 -
信息处理:日常工作中那些机械重复的任务,比如搜索资料、整理文档、客户邮件回复,AI都能轻松接管。
这些应用,已经不是未来,而是现在!
斯坦福前阵子就发布了一款AI论文助手,我亲自试了一下,真的非常惊艳!
未来,AI会成为“员工”
现在的Agent技术,已经能显著提高个人工作效率。
但未来,它可能会直接颠覆整个公司组织结构。
想象一下,未来的公司可能只需要一个CEO,其他所有工作都由AI智能体负责。
CEO之下,可能有AI市场总监、AI财务总监、AI运营专员……它们相互协作,高效完成所有任务!
这种场景听起来像科幻小说,但实际上,我们已经在迈向这个方向。
OpenAI最新发布的GPT-4o,让AI的理解能力和执行力进一步升级,这意味着Agent的智能化程度还会持续提升。
Agent的本质:AI开始“行动”
如果说之前的AI只是一个“工具”,那么Agent的出现,意味着AI正在变成“行动者”。
它不只是提供建议,而是主动规划、执行任务,甚至可以自行调整优化工作方式。
这不仅是生产力的飞跃,更是工作方式的彻底变革。
未来,AI不仅仅是我们的助手,它甚至可能成为我们的同事,甚至……竞争对手。
七、信息生产工业革命
顺着上一步的逻辑继续往下,你会很容易发现一个关键问题:
AI所取代的,几乎都是“信息处理”类的工作。
这并不奇怪,因为AI仍然主要存在于电脑里,它的核心能力就是处理信息。
虽然现在也有公司在研究人形机器人或智能机械臂,但目前AI最擅长的,依然是信息制造与处理。
信息处理的变革,本质上就是一场“工业革命”
既然AI可以替代信息处理工作,那意味着什么?
意味着信息的生产效率大幅提升!
如果我们换个角度来看,这不就是第一次工业革命里的“纺织机”代替手工织布吗?
18世纪,大部分工人都需要用双手劳作,后来机器替代了他们。
而今天,大部分的工人坐在办公室里用键盘劳作,现在,AI又在替代他们!
不制造实体产品,能叫工业革命吗?
有些人可能会说:
“AI的进步主要体现在信息处理,而不是实体制造,能叫‘工业革命’吗?”
当然能!
工业革命的本质,是机器替代人力,提高劳动效率,推动社会生产和消费的提升。
现在,AI正以指数级的速度提高信息的生产和处理效率,而信息,早已是现代社会最重要的生产资料和消费品之一。
举个例子,过去一本书从撰写到出版可能需要一年,但在AI的帮助下,现在几天就能完成初稿;
过去制作一部电影需要几百人、几年时间,但未来AI可能在几天内生成完整的电影。
这不仅是效率提升,更是生产力范式的彻底变革。
AI带来的,是一场信息生产的工业革命
生产力提升,工作方式变革,社会运转加速,AI带来的影响,完全可以称之为一场新的“工业革命”。
只是,这一次,革命的对象不是纺织工人,而是信息工作者;被替代的不是织布机,而是打字的键盘。
所以,把这场变革称为 “信息生产工业革命” ,一点都不过分吧?
八、新造富工具
提到工业革命,就绕不开财富传奇。
世界上最大的造富周期,往往伴随着科技革命。
每一次技术革命,都诞生了新的商业巨头:
- 工业革命 让洛克菲勒建立石油帝国。
- 电气革命 让亨利·福特用流水线生产汽车,彻底改变交通行业。
- 信息技术革命 让比尔·盖茨凭借PC统治计算机时代。
- 互联网革命 让杰夫·贝索斯依靠亚马逊重塑全球零售。
- 移动互联网时代 造就了一批社交媒体和电动车巨头。
那么,AI时代的科技英雄是谁?
如今,AI已成为新的造富风口,从大模型创业到AI驱动的智能工具,无数公司涌入这片蓝海。
英伟达的黄仁勋(老黄)已经站在风口,AI的算力需求,让他的GPU成为新黄金。
OpenAI、DeepMind、Anthropic等公司,更是资本竞逐的焦点。
这一切,正是因为AI的潜力巨大,任何一个正确的切入点,都可能诞生新一代巨头。
如果说过去的互联网是“代码创造财富”,那么今天,AI就是新的财富引擎。
九、社会加速器:打破“牛马陷阱”
每一次工业革命,都会推动社会的巨大变革。
- 第一次工业革命 带来了城市化,诞生了资本主义。
- 第二次工业革命 让电力、汽车走入千家万户,生活更加便利。
- 信息技术革命 让人们即使相隔万里,也能即时沟通、协作。
那么,AI这种信息生产方式,能带来什么社会进步?
至少,它会在两个方向上彻底改变世界。
方向一:思想解放,AI让人类摆脱“牛马陷阱”
人类一直没有摆脱**“牛马陷阱”**——
为了生产商品,不得不在流水线的一环中承担机械重复的工作。
但是,AI的出现,或许能改变这一点。
因为在现代社会,许多商品的“最源头”就是信息——数据、设计、创意、算法……
一旦这些部分可以被AI接管,那么所有重复性的劳动都可以被自动化处理。
那么,人类真正该做的工作,就只剩下AI无法理解的东西:
爱、创意、灵感、体验生活。
试想一个未来:
你的“工作”可能只是去尽情生活,享受世界,然后在某一天受到启发,觉得生活中缺少一个东西,
你只需要告诉AI,几天内,这个东西就能被量产并上市,而你因此获得版权收益!
这意味着,AI可能会让人类真正迎来“去劳动化”社会,让更多人回归到创造与灵感之中。
方向二:加速科研,推动科技爆发
AI不仅仅是生产力工具,更是科研领域的“超级助推器”。
- AlphaFold 让生物学家可以预测蛋白质结构,把过去几十年的研究周期压缩到几天。
- AI发现新抗生素,超越了人类科学家的传统思维框架。
- 物理、数学、化学等领域的研究,也正在被AI加速推进。
简单来说,AI的计算能力、分析能力、预测能力,让科学研究不再受限于人类的思维速度。
未来的科学突破,可能不再是“几十年一遇”,而是“每年都有”。
AI的社会加速效应,才刚刚开始
信息革命让人类进入了互联网时代,而AI革命,或许会让社会进入一个全新的“加速时代”。
不管是思想解放,还是科技爆发,AI带来的社会影响,可能比过去所有工业革命加起来还要大,AI有可能带领人类进入一个前所未有的繁荣时代,在这个时代里一些资源都将唾手可得。
它会带领人类,从重复劳动中解放,进入一个真正由创造力驱动的时代。
十、魔法:AI的“涌现”现象
到了这一层,似乎带点玄学的味道,但先别急,听我解释。
大模型的参数只有在某个“临界点”突破时,才会发生“性能突变”——突然就变聪明了。
这个现象,在数学上有一个正式的名称:“涌现”(Emergence)。
蚂蚁的智慧:涌现的自然奇迹
在复杂科学中,最经典的涌现案例,便是蚂蚁社会。
在数日内,蚂蚁们搬运沙粒,从无到有地建起复杂的巢穴——
这些巢穴拥有隧道、房间、多层网络、通风系统、食物储存区、孵化单元,甚至还有高效的交通路线规划。
但蚁群中,没有一只蚂蚁是“建筑师”或“城市规划师”。
没有个体在指挥这一切,也没有任何蓝图或总体规划。
蚂蚁只是按照简单的规则行动,但最终创造出了一座庞大而精密的城市。
这就是**“涌现行为”**——
当系统的个体足够多、规则足够稳定时,整体会产生远超个体认知能力的复杂行为。
AI的智能,竟然也是涌现的?
我们的大脑其实也是如此——单个神经元并不聪明,但亿万个神经元组成了人类的智慧。
而大模型的AI,同样展现出了这种特性——它的智能并不是某个单独的算法决定的,而是数据、参数和计算规模达到某个极限后,“自然涌现”的。
举个例子:
过去,科学家需要手把手教AI如何翻译、写作、下棋,而今天的大模型“突然”就学会了这些技能,甚至没人知道它具体是怎么学会的!
这是一个“智能从混沌中涌现”的过程,它无须明确的因果链条,只要“量变足够大”,AI的能力就会突变。
为什么说这是“魔法”?
因为,人类无法完全理解这个过程。
- 生命是涌现的,蚂蚁的智慧是涌现的,我们大脑的思考能力也是涌现的。
- 如今,AI的智能,也是涌现的。
过去,涌现只属于大自然,只属于“造物主”的领域,而今天,人类第一次用数学、算力和数据,复制了“涌现”的奇迹。
这,难道不是魔法吗?
这件事对人类世界观的改变,将无异于曾经科技文明对农业文明思想的改变,人们将重新理解世界,理解理性。
大气层,第二次启蒙运动
恭喜你,坚持到最后!
在这个信息爆炸、节奏飞快的时代,你能完整地看完这段内容,足以证明你的好奇心与思考能力。
那么,到了这里,你一定会想到一个更深层次的问题:
AI的出现,是否正在推动一场新的思想革命?
启蒙运动:理性的崛起
回顾历史,第一次启蒙运动,让人类意识到了理性,摆脱了神权的束缚,开始拥抱科学与民主。
这场变革彻底改变了社会,使得现代科学体系得以建立,理性成为人类思维的基石。
但几百年后,这股精神逐渐变了味。
人们从“相信科学”演变成了“盲信科学”——
仿佛一切问题只要加上“科学”二字,就一定是对的,
一切答案,必须要有严格的因果推理,才能被接受。
然而,AI的崛起,正在颠覆这一认知。
AI的思维方式:无因果推理的智能
随着我们对AI的理解加深,我们发现,它的推理过程,竟然是一个完全“非因果”的过程。
AI并不像人类那样,依赖清晰的逻辑链条来推导结论,而是通过庞大的数据、复杂的计算,直接得出正确答案——但它自己也不知道是怎么得出来的。
举个例子:
2020年,麻省理工学院发现了一种新的抗生素——Halicin。
这种抗生素能够杀死对现有药物已经耐药的细菌,而且自身不会引发新的耐药性。
令人惊讶的是,Halicin完全是由AI发现的!
研究者先用AI训练了一个模型,让它学习两千种已知分子的特征,识别哪些分子具有抗菌能力。
然后,AI在FDA批准的61,000种化合物中筛选,最终找到了Halicin,并成功验证其疗效。
问题来了:AI到底是怎么找到这个分子的?
过去,科学家们有一套明确的规则,判断某种分子是否能成为抗生素,例如原子量、化学键的某些特征。
但是AI的发现,完全不符合这些已知规则!
换句话说,AI用了一种我们不理解的方式,发现了一个科学家无法推理出来的答案。
那么,问题来了:
这个“黑箱”式的推理,还是“科学”吗?
如果AI能够凭借某种无法解释的模式,找到更好的答案,我们是否还应该执着于传统的因果逻辑?
第二次启蒙运动:拥抱不确定性
我们习惯了因果推理,习惯了**“只有有逻辑链条的推理,才是科学”**,
但AI的崛起正在告诉我们:
“世界远比我们想象的复杂,有些真理,可能根本无法用简单的逻辑推理出来。”
所以,我愿将这一变革称之为:
“第二次启蒙运动”——这一次,不是对理性的否定,而是对理性的扩展。
我们要学会承认世界的复杂性,接受不确定性,接受“有些真相无法用人类逻辑解释”。
我们不再是“科学”的奴隶,不再是“逻辑”的奴隶。
我们,要成为自己思维的主人。
欢迎使用Markdown编辑器
你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。
新的改变
我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:
- 全新的界面设计 ,将会带来全新的写作体验;
- 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
- 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
- 全新的 KaTeX数学公式 语法;
- 增加了支持甘特图的mermaid语法1 功能;
- 增加了 多屏幕编辑 Markdown文章功能;
- 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
- 增加了 检查列表 功能。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。2
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎