
高斯消元
crazy morning
去西之西处,驾驭长风
展开
-
P5027 Barracuda
题目 题目 思路 不得不说这题还是有坑的,其实每一次称量都可以抽象为一个m元1次且最大系数为1的方程,接下来我们枚举n+1n+1n+1种情况,枚举到i时,考虑当第i种情况成立且唯一(即没有别的称量错误的方法有合法答案)的解。 code: #include<cstring> #include<algorithm> #include<iostream> #include<cstdio> #include<cmath> #include<cstdl原创 2021-02-13 17:25:18 · 139 阅读 · 1 评论 -
P2455 [SDOI2006]线性方程组
题目 题目 思路 其实这题和之前的高斯消元差不多,但是,高斯-约旦消元法会导致一个问题:消元的顺序决定结果! 比如说前面有一组方程要求的项为0,我们需要把它与下面交换,但是如果没得换了,这时我们要把它们留到最后,因为它们决定我们是无解还是无唯一解,其实这个时候我们把它们随便代入一组方程即可,详见代码 code: #include<cstring> #include<algorithm> #include<iostream> #include<cstdio> #原创 2021-02-12 16:19:10 · 180 阅读 · 0 评论 -
P3389 【模板】高斯消元法
题目 题目 思路 首先我们扯点别的: 各位不觉得这玩意用在初中的n元一次方程上完成作业很赞吗 好了回归正题: 这是约旦消元法的板子(这题就不需要回代了,反正n就100) 具体来说,就是选择一个主元,用它把同一列的其他位置消掉(化为0),最后的结果就是每行最后一个数除以每一行前面n个数中唯一一个不为0的数。 当某一列的主元为0,我们需要寻找同列的不为0的主元并交换它们(整行交换),如果一整列都是0呢?那不废了无唯一解 code: #include<cstring> #include<alg原创 2021-02-11 14:00:32 · 127 阅读 · 0 评论