前言
🤔️对于生成式AI,大模型、AIGC或者语言模型的概念,有何不同?
以AIGC为例,它在不同的场景下有多重含义。从字义上讲,AIGC用英文表示人工智能生成的内容。但在实际使用时,它往往有多个意思,有时指人工智能生成的内容,有时指生成内容所用的算法,有时指厂家提供的产品或服务。
大模型的概念是指在深度学习发展到一定阶段时,人们形象地给模型取的名字。它的特点是什么呢?大多数人会注意到“大”这个词,更多的时候是从2018年Bert模型出现之后开始流行的。当时,人们第一次看到一个几百兆的模型,觉得这是大模型。相比之下,目前的大模型已经有几百个GB甚至上千个GB。可以看到,这个词随着时间的推移,含义会发生很多的变化。
另一个概念是生成式人工智能,在汉语表达中也叫做生成式AI。这个词更偏向于我们国家官方对生成式模型的称呼。
最后一个是语言模型,这是从技术角度的称呼。如果从事研究自然语言处理或自然语言理解的同学,可能会更了解这个概念。它指的是对语言进行建模的模型。
对于业内人士来说,他们可能会关注生成式语言模型的区别,比较经典的包括Bert、T5、ChatGPT等。在自然语言理解方面,Bert仍然是一个很好的模型,被广泛应用于各种任务中。Bert是一个自编码的模型,利用了双向信息,对上下文的信息有很好的掌握,有利于完成自然语言理解任务,如分类、完形填空、阅读理解等,但无法直接做生成。
另一种生成式语言模型是T5,它是一种序列到序列的模型,同时也应用了双向注意力机制。T5主要用于条件生成任务,这意味着给定一个完整且丰富的条件,例如一篇长文章,它可以生成一个摘要或翻译等任务。在这种情况下,输入和输出的长度基本上是对等的,属于条件生成范畴。
再来看看ChatGPT,它是一种单向语言模型,只能通过前文来预测后面的内容。因此,ChatGPT主要擅长一些生成式任务,例如问答、写作等。它可以做到无条件生成,例如给出一句话,它可以回答上千个字的内容,甚至帮助写一篇论文。这是ChatGPT的一个显著特点。
用考试来做类比对比模型,Bert是觉得世界上有很多种问题,可能有判断题、选择题、填空题。而ChatGPT它能够将所有自然语言理解问题转化为问答问题。这意味着,如果一个模型能够表现出色地回答自然语言的问答问题,那么它往往也能良好地完成其他自然语言任务,如选择题和填空题等。
目前,这三种模型各具特色,没有一种模型可以在自然语言理解、无条件生成和条件生成三个领域同时达到最优。这也很容易理解,因为很难找到一种方式,它在所有条件下都是最好的。
零基础入门AI大模型
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
资料领取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击下方链接免费领取【保证100%免费】