- 博客(23)
- 收藏
- 关注
原创 基于CrewAI创建一个简单的智能体
CrewAI是一个Python多智能体协作框架,可模拟真实团队分工协作。它通过定义不同角色Agent(如研究员、作家)和具体Task,实现复杂任务的自动化处理。核心优势包括:角色分工明确、支持任务编排、低代码开发和兼容多种大模型。适用于技术文档生成、数据分析报告等场景。测试案例演示了如何使用两个Agent协作完成"Python文件读取方法研究"和"技术博客撰写"任务,最终输出500字中文技术博客。框架核心组件包括LLM配置、Agent定义、Task分配和Crew团队管
2026-02-08 17:15:58
555
原创 图像增强预处理操作——Python实现
本文介绍了多种图像增强技术及其实现方法,包括直方图均衡化、白平衡、亮度增强、对比度/饱和度调整、高光去除、随机遮挡、高斯模糊以及几何变换等。这些技术能有效改善图像质量,提升后续图像识别和目标检测的精度。文中详细阐述了每种技术的原理、实现步骤和参数配置,并以缺陷检测数据为例进行可视化展示。针对不同任务需求,需要选择合适的数据增强方法,部分变换可能效果不明显甚至变差,需根据具体场景灵活调整。
2026-01-05 11:45:03
174
原创 深度强化学习(1)——基础知识(名词解释,概率论基础,蒙特卡洛采样,马尔可夫决策过程)
强化学习基础概念与核心方法 摘要:本文系统介绍了强化学习的核心概念和基础方法。首先阐述了强化学习的核心符号与术语体系,包括状态、动作、奖励、回报等基本要素,以及价值函数、策略函数等关键概念。其次,详细讲解了概率论基础和蒙特卡洛采样方法,这是强化学习的数学基础。然后重点分析了马尔可夫决策过程(MDP)的构成要素及其随机性特征,包括环境、智能体与策略的交互机制。最后讨论了强化学习的两种主要方法:基于模型的强化学习和无模型强化学习,并介绍了价值学习和策略学习的区别与联系。通过走迷宫机器人等实例,直观展示了强化学习
2026-01-04 15:02:29
950
原创 目标检测系列之YOLOv11——v8模型的继续改进
YOLOv11的迭代升级,再次体现了Ultralytics团队“精细化优化、实用化导向”的研发思路。没有颠覆性的架构变革,而是通过C3K2模块、嵌入式注意力机制、轻量化检测头等核心模块的优化,实现了性能的稳步提升,同时最大程度降低了开发者的迁移成本。这种迭代模式,既保障了模型的成熟度与稳定性,又能快速响应工业场景的实际需求。未来,随着YOLOv11生态的不断完善,其在多模态检测、小样本学习、联邦学习等方向的拓展值得期待。
2026-01-01 12:50:53
994
原创 强化学习(1)——入门核心知识点
强化学习是机器学习的一个重要分支,它的核心思想来源于心理学中的行为主义理论,即 “试错学习”。智能体(Agent)通过在环境(Environment)中不断尝试各种动作(Action),并根据环境反馈的奖励(Reward)来学习如何最大化未来的累积奖励。
2025-12-29 09:10:39
1212
原创 目标检测系列之YOLOv10——避免了非最大抑制(NMS)操作
YOLOv10 的核心是 “效率与流程的双重革命”:既通过全链路轻量化模块实现了 “更快更轻”,又通过双检测头实现了 “无 NMS 端到端检测”,是实时目标检测领域的又一里程碑式升级。
2025-12-24 09:47:46
924
原创 目标检测系列之YOLOv12——融入注意力机制
YOLOv12 的核心贡献,不仅是提出了几个高效的注意力模块,更重要的是构建了一套 “注意力友好” 的实时检测框架—— 它证明了注意力机制并非实时检测的 “负担”,只要通过合理的架构设计和工程优化,就能让其成为精度提升的 “核心动力”。复杂问题简单化:Area Attention 用 “均匀分割” 替代复杂的窗口机制,R-ELAN 用 “残差 + 瓶颈聚合” 解决优化问题,避免了过度设计;任务适配优先:所有架构优化都围绕 YOLO 的 “实时性” 需求,而非盲目追求注意力的理论优越性;
2025-12-19 08:00:00
1957
原创 目标检测系列之YOLOv9——解决反向传播中的梯度信息丢失
在目标检测领域,YOLO系列一直是实时检测的代名词。2024年初,YOLOv9横空出世,凭借其创新的架构设计和技术突破,在精度和速度之间找到了新的平衡点。作为YOLO系列的最新成员,YOLOv9不仅在MS COCO数据集上刷新了记录,更重要的是为轻量级目标检测模型提供了全新的设计思路。
2025-12-17 11:47:57
1322
原创 目标检测系列之YOLOv7——Trainable bag-of-freebies sets new state-of-the-art for real-time object
YOLOv7论文通过E-ELAN网络结构、重参数化策略、SAT自适应样本选择及优化的训练增强等核心创新,成功实现了实时目标检测领域的精度-速度新标杆,其“可训练免费午餐”的设计思路极具借鉴价值。论文的核心贡献在于:在不牺牲推理速度的前提下,通过训练阶段的全方位优化,最大化模型的性能潜力,完美契合工业界对实时性与精度的双重需求。
2025-12-16 08:00:00
1412
原创 目标检测系列之YOLOv5——最好用的YOLO版本之一
YOLOv5作为一款轻量、高效、易用的目标检测模型,凭借其出色的性能和灵活的部署能力,在工业检测、智能监控、自动驾驶等多个领域得到了广泛的应用。
2025-12-15 08:00:00
1243
原创 目标检测系列之YOLOv4——速度与精度的平衡
在目标检测领域,继Faster R-CNN这类高精度但相对复杂的双阶段检测器之后,以YOLO(You Only Look Once)系列为代表的。
2025-12-13 20:38:14
1122
原创 目标检测系列之Faster R-CNN——比Fast更Fast的R-CNN
Faster R-CNN作为目标检测领域的经典两阶段模型,其核心贡献在于提出RPN网络和Anchor机制,实现了端到端的候选区域生成和检测,极大提升了检测速度和精度,为后续的两阶段模型(如Mask R-CNN)奠定了基础。然而,Faster R-CNN仍存在一些局限性:一是Anchor机制依赖预设的尺度和长宽比,对极端尺度(极小或极大)目标的检测效果较差;二是RoI Pooling层存在量化误差,影响边界框的定位精度;三是两阶段结构相比一阶段模型(如YOLO、SSD),检测速度仍有差距。
2025-12-13 17:48:15
1235
原创 目标检测系列之YOLOv6——用于工业领域的目标检测框架
YOLOv6是由美团视觉智能部研发的开源目标检测框架,首次发布于2022年,后续经过多次版本迭代(目前最新稳定版为v3.0),核心定位就是“高效、精准、易部署”,完美匹配工业场景的实际需求。相较于YOLOv5、YOLOv7等通用型框架,YOLOv6在设计之初就充分考虑了工业部署的痛点:比如边缘设备(如NVIDIA Jetson系列、工业级CPU)的算力限制、复杂工业环境(光照变化、遮挡、小目标密集)下的检测稳定性、以及生产线对推理速度的实时性要求(通常需达到30FPS以上)。
2025-12-10 11:00:59
923
原创 目标检测系列之SSD(Single Shot MultiBox Detector)——单次多框目标检测
SSD作为单阶段目标检测算法的经典代表,创新性地融合了单阶段检测的速度优势和多尺度特征、Anchor机制的精度优势,打破了两阶段算法在目标检测领域的垄断,为后续的YOLO v2/v3、RetinaNet等优秀算法提供了重要的设计思路。后续基于SSD的改进方向主要集中在: 1. 引入特征金字塔网络(FPN)进一步增强多尺度特征融合能力,提升小目标检测精度;2. 采用自适应Anchor生成策略,替代固定尺度和长宽比的Anchor,提升对复杂形状目标的适应性;
2025-12-09 10:12:53
1176
原创 目标检测系列之YOLOv3——一次渐进式网络结构改进
在 COCO 数据集测试中,YOLOv3 展现出优异的速度与精度平衡。其中 YOLOv3 - 608 版本 mAP - 50 达 57.9%,接近当时的顶尖模型;YOLOv3 - spp 版本通过添加改进的 SPP 块,AP50 进一步提升 2.7%。与同期 Faster R - CNN 相比,YOLOv3 精度接近,而推理速度快 6 倍以上;对比 SSD,其精度和速度均有优势,在 V100 显卡测试中可达 32FPS,是当时实时检测场景的优选模型。尽管优势显著,YOLOv3 仍存在不足。
2025-12-07 08:00:00
2060
原创 目标检测系列之FPN(Feature Pyramid Networks)——特征金字塔
今天咱们深入聊聊目标检测领域中极具里程碑意义的特征提取结构——FPN(Feature Pyramid Networks,特征金字塔网络)。在目标检测任务中,如何同时高效检测不同尺度的目标一直是核心难题,而FPN的出现,几乎成为了后续主流目标检测模型的“标配”结构。本文将从背景、核心思想、网络结构、实现细节、优势及应用等方面,带你彻底搞懂FPN。
2025-12-05 11:41:08
1368
原创 目标检测系列之YOLOv8——“最值得用”的YOLO版本之一
扮演着“感受野增强器”的角色。通过对输入特征图进行不同尺度的池化操作,可以获取到更丰富、更具代表性的特征信息。SPPF模块在保持空间金字塔池化优点的基础上,通过优化算法实现更快的运算速度,从而提高目标检测的效率。
2025-12-03 21:52:58
1337
原创 目标检测系列之Fast R-CNN——让检测更快更准
在深度学习目标检测的发展历程中,Fast R-CNN 是一个里程碑式的模型。它继承了 R-CNN 和 SPPNet 的思想,并进行了大刀阔斧的改进,一举解决了前辈们的诸多痛点,在速度和精度上都实现了巨大的飞跃。要理解 Fast R-CNN 的精妙,我们首先要知道它要解决什么问题。:需要存储大量的中间特征(磁盘空间消耗大),并且训练三个独立的模块(CNN, SVM, 回归器)非常麻烦。:引入了。
2025-12-02 13:00:00
973
原创 目标检测系列之SPPNet——让深度卷积网络告别输入尺寸枷锁
引言:在计算机视觉领域,卷积神经网络(CNN)已经展现出了巨大的威力。然而,在SPPNet出现之前,一个看似微不足道却十分棘手的问题一直困扰着研究者们:固定尺寸的输入要求。SPPNet的提出,巧妙地解决了这一问题,并成为了许多里程碑式模型(如Fast R-CNN, R-CNN)的基石。
2025-12-01 08:00:00
1215
原创 目标检测系列之YOLOv1——You only look once
把目标检测问题直接定义为边界框坐标和类别概率的回归问题,在一张图像上定位和分类是同时做的,如上图左边,人,狗,马的一张图片放到yolo经过裁剪图片后输入到单一的卷积网络经过NMS最大值抑制之后输出了右边这张图,能够同时预测多个边界框及其对应的类别概率。YOLO 极其快速: YOLO 可以在不到 25 毫秒的延迟内处理视频流,实现真正的实时检测并且YOLO 的平均精度(mAP)比其他实时检测系统高出一倍以上。具有很强的泛化能力:在拿毕加索的抽象艺术画进行预测的效果比前人的系统的性能强。
2025-11-30 11:43:22
1126
原创 目标检测系列之R-CNN——深度学习目标检测的开山之作
要理解R-CNN为何如此革命性,我们首先必须清楚它要解决的是什么问题,以及在此之前的技术为何步履维艰。
2025-11-29 22:25:03
1199
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅