2100. Find Good Days to Rob the Bank

题目:

You and a gang of thieves are planning on robbing a bank. You are given a 0-indexed integer array security, where security[i] is the number of guards on duty on the ith day. The days are numbered starting from 0. You are also given an integer time.

The ith day is a good day to rob the bank if:

  • There are at least time days before and after the ith day,
  • The number of guards at the bank for the time days before i are non-increasing, and
  • The number of guards at the bank for the time days after i are non-decreasing.

More formally, this means day i is a good day to rob the bank if and only if security[i - time] >= security[i - time + 1] >= ... >= security[i] <= ... <= security[i + time - 1] <= security[i + time].

Return a list of all days (0-indexed) that are good days to rob the bank. The order that the days are returned in does not matter.

Example 1:

Input: security = [5,3,3,3,5,6,2], time = 2
Output: [2,3]
Explanation:
On day 2, we have security[0] >= security[1] >= security[2] <= security[3] <= security[4].
On day 3, we have security[1] >= security[2] >= security[3] <= security[4] <= security[5].
No other days satisfy this condition, so days 2 and 3 are the only good days to rob the bank.

Example 2:

Input: security = [1,1,1,1,1], time = 0
Output: [0,1,2,3,4]
Explanation:
Since time equals 0, every day is a good day to rob the bank, so return every day.

Example 3:

Input: security = [1,2,3,4,5,6], time = 2
Output: []
Explanation:
No day has 2 days before it that have a non-increasing number of guards.
Thus, no day is a good day to rob the bank, so return an empty list.

Constraints:

  • 1 <= security.length <= 105
  • 0 <= security[i], time <= 105

思路:

本题是个小dp题,只要知道每个i前面最长非递增长度和后面每个非递减长度即可,之后再和time逐一比较获得答案。因为左右对称,可以用一次遍历来获得dp数值。对于before,只要security[i]不比前一个小,before[i]等于before[i - 1] + 1,这里before[i]代表的就是i前面最长的非递增长度。反之同样的处理after,只要注意相对的index即可。顺便吐槽这个题目,打劫银行可还行,不愧自由美利坚,BOA,chase瑟瑟发抖。

代码:

class Solution {
public:
    vector<int> goodDaysToRobBank(vector<int>& security, int time) {
        int n = security.size();
        vector<int> before(n), after(n);
        for (int i = 1; i < n; i++) {
            if (security[i] <= security[i - 1])
                before[i] = before[i - 1] + 1;
            if (security[n - i - 1] <= security[n - i])
                after[n - i - 1] = after[n - i] + 1;
        }
        vector<int> res;
        for (int i = time; i < n - time; i++) {
            if (before[i] >= time && after[i] >= time)
                res.push_back(i);
        }
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值