343. Integer Break

题目:

Given an integer n, break it into the sum of k positive integers, where k >= 2, and maximize the product of those integers.

Return the maximum product you can get.

Example 1:

Input: n = 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.

Example 2:

Input: n = 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.

Constraints:

  • 2 <= n <= 58

思路:

dp题,dp[i]表示当前i可以被拆分相乘所得的最大值,那么转移公式是比i小的数j,max({ dp[i], j * dp[i - j], j * (i - j) }),这里dp[i]不用解释了;j * dp[i - j]相当于把i拆成j 和 i - j,当时这个i - j我们继续拆,拆成所能多个数,去获得它们的乘积,即我们用以前获取的dp值来计算;而j * (i - j)也是把i拆成j 和 i - j,但是i - j不拆了,直接把i 拆成两个数,然后相乘。搞清楚这个转移公式后就简单了,初始化的话因为n一定大于等于2,所以0和1都不用初始化,dp[2]只能拆1 * 1 = 1,然后顺序遍历即可。

代码:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1, 0);
        dp[2] = 1;
        for (int i = 3; i < n + 1; i++) {
            for (int j = 1; j < i; j++) {
                dp[i] = max({ dp[i], j * dp[i - j], j * (i - j) });
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值