题目链接
概述
题目背景
在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量
有一天他醒来后发现自己居然到了联盟的主城暴风城
在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛
题目描述
在艾泽拉斯,有n个城市。编号为1,2,3,…,n。
城市之间有m条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量。
每次经过一个城市,都会被收取一定的过路费(包括起点和终点)。路上并没有收费站。
假设1为暴风城,n为奥格瑞玛,而他的血量最多为b,出发时他的血量是满的。
歪嘴哦不希望花很多钱,他想知道,在可以到达奥格瑞玛的情况下,他所经过的所有城市中最多的一次收取的费用的最小值是多少。
输入格式
第一行3个正整数,n,m,b。分别表示有n个城市,m条公路,歪嘴哦的血量为b。
接下来有n行,每行1个正整数,fi。表示经过城市i,需要交费fi元。
再接下来有m行,每行3个正整数,ai,bi,ci(1<=ai,bi<=n)。表示城市ai和城市bi之间有一条公路,如果从城市ai到城市bi,或者从城市bi到城市ai,会损失ci的血量。
输出格式
仅一个整数,表示歪嘴哦交费最多的一次的最小值。
如果他无法到达奥格瑞玛,输出AFK。
思路
求在血量限制条件下最大值的最小值,这很容易让我们联想到二分法,我们对一次性缴费最最大值进行二分,用dijkstra来判断是否可以活着到达终点站,如果可以就缩小右边界,否则扩大左边界,我们要求最小值,所以因该返回左边界。这里对每个节点的 权值进行了排序,以减少二分的次数。但是要注意的就是原来的费用不能破坏,因为在找最短路(最小伤害)时还需要与原来节点权值进行比较,以此判断是否更新。所以我们需要fee[N], sorted_f[N]这两个数组。
二分法一定要注意对边界的判断!
代码
#include <cstdio>
#include <cctype>
#include <queue>
#include <cstring>
#include <algorithm>
typedef std::pair<int, int> P;
const int N = 1e4 + 10, M = 5e4 + 10;
int n, m, blood, cnt;
int head[N], dis[N], fee[N], sorted_f[N], vis[N];
struct edge{
int to, nxt, val;
}e[M << 1];
inline void add(int u, int v, int w){
e[++cnt] = {v, head[u], w};
head[u] = cnt;
}
inline int read(){
int x = 0; char ch = getchar();
while (!isdigit(ch)) ch = getchar();
while (isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48); ch = getchar();}
return x;
}
std::priority_queue<P, std::vector<P>, std::greater<P> > que;
bool dij(int target){
memset(dis, 0x3f, sizeof dis);
memset(vis, 0, sizeof vis);
dis[1] = 0;
que.push(std::make_pair(dis[1], 1));
while (!que.empty()){
int u = que.top().second;
que.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to, w = e[i].val;
if (dis[v] > dis[u] + w && fee[v] <= target){
dis[v] = dis[u] + w;
que.push(std::make_pair(dis[v], v));
}
}
}
return dis[n] < blood;
}
int main() {
n = read(), m = read(), blood = read();
for (int i = 1; i <= n; ++i)
sorted_f[i] = fee[i] = read();
for (int i = 1, x, y, z; i <= m; ++i) {
x = read(), y = read(), z = read();
add(x, y, z), add(y, x, z);
}
std::sort(sorted_f + 1, sorted_f + 1 + n);
if (!dij(sorted_f[n])){printf("AFK\n"); return 0;}
int l = 1, r = n;
while (l <= r){
int mid = l + (r - l) / 2;
if (dij(sorted_f[mid])) r = mid - 1;
else l = mid + 1;
}
printf("%d\n", sorted_f[l]);
return 0;
}