题目描述
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:
给定的有序链表: [-10, -3, 0, 5, 9],
一个可能的答案是:[0, -3, 9, -10, null, 5], 它可以表示下面这个高度平衡二叉搜索树:
0
/ \
-3 9
/ /
-10 5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/convert-sorted-list-to-binary-search-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
链表转化为数组 找中点 递归的放入树中
每次递归用 O(1) 时间获取到数组的中点
class Solution {
public TreeNode sortedListToBST(ListNode head) {
if(head == null) return null;
if(head.next == null) return new TreeNode(head.val);
//存储获得的值
ArrayList<Integer> arrayList = new ArrayList<Integer>();
while(head!=null){
arrayList.add(head.val);
head = head.next;
}
return BST(0,arrayList.size()-1,arrayList);
}
public TreeNode BST(int left, int right, ArrayList<Integer> arrayList){
if(left>right) return null;
int mid = left + (right - left +1)/2;
TreeNode root = new TreeNode(arrayList.get(mid));
root.left = BST(left,mid-1,arrayList);
root.right = BST(mid+1,right,arrayList);
return root;
}
}
快慢指针
每次用 O(N) 时间获取链表的中间节点
class Solution {
public TreeNode sortedListToBST(ListNode head) {
if(head == null)return null;
if(head.next == null)return new TreeNode(head.val);
// 设置快慢指针。当fast到终点时,slow刚好走到中间
ListNode preSlow = head;
ListNode slow = head;
ListNode fast = head;
while(fast !=null && fast.next != null){
preSlow = slow;
slow=slow.next;
fast=fast.next.next;
}
//以最中间的点为根结点 并将整个list一分为二 左边和右边继续进行树的构造
preSlow.next = null;
TreeNode root = new TreeNode(slow.val);
root.left = sortedListToBST(head);
ListNode rightPart = slow.next;
root.right = sortedListToBST(rightPart);
return root;
}
}
两种思想的集合 平衡树的中序遍历逆推
class Solution {
ListNode h;
public TreeNode sortedListToBST(ListNode head) {
if(head == null)return null;
if(head.next == null)return new TreeNode(head.val);
h=head;
int len = 0;
while(head != null){
head = head.next;
len++;
}
return BST(0,len-1);
}
public TreeNode BST(int left, int right){
if(left>right) return null;
int mid = left + (right - left +1)/2;
// 递归产生左子树
TreeNode leftTree = BST(left, mid - 1);
// 此时递归完 左子树已生成 h刚好指向最中间的位置
TreeNode root = new TreeNode(h.val);
// 进行右子树的递归构建
h=h.next;
root.left = leftTree;
root.right = BST(mid+1,right);
return root;
}
}