题目描述
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
双指针
守住最大边 短的边向里面滑动 保存下来每次的最大值
class Solution {
public int maxArea(int[] height) {
int i = 0, j = height.length - 1, res = 0;
while(i < j){
res = height[i] < height[j] ?
Math.max(res, (j - i) * height[i++]):
Math.max(res, (j - i) * height[j--]);
}
return res;
}
}
动态规划
这个方法超出时间限制 不通过 主要看思想
双层循环 计算每一个dp[i][j]的大小 所以会超时
class Solution {
public int maxArea(int[] height) {
int len = height.length;
if(len<2 || height==null) return 0;
int[][] dp = new int[len][len];
int i = 0;
int j = 1;
int initJ = 1;
while (j < len) {
while (i < len && j < len) {
if (i + 1 == j) {
dp[i][j] = Math.min(height[i], height[j]);
} else {
dp[i][j] = Math.max(dp[i][j - 1], Math.max(dp[i + 1][j], (j - i) * Math.min(height[i], height[j])));
}
i++;
j++;
}
i = 0;
initJ++;
j = initJ;
}
return dp[0][len - 1];
}
}
递归
class Solution {
// maxArea(i, j) where j - i == 1 = min(h[i], h[j])
// maxArea(i, j) = max(
//. [(j - i) * min(h[i], h[j]),
//. // We can omit one of below.
//. maxArea(i+1, j),
//. maxArea(i, j-1)])
int maxAreaWork(int[] height, int i, int j) {
if (j - i == 1) return Math.min(height[i], height[j]);
int primaryChoose = (j-i)*Math.min(height[i], height[j]);
int secondaryChoose = height[i] > height[j]
? maxAreaWork(height, i, j-1)
: maxAreaWork(height, i+1, j);
return Math.max(primaryChoose, secondaryChoose);
}
public int maxArea(int[] height) {
return maxAreaWork(height, 0, height.length - 1);
}
}