[LeetCode 中等 双指针]11. 盛最多水的容器

题目描述

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:

输入:[1,8,6,2,5,4,8,3,7]
输出:49

双指针

守住最大边 短的边向里面滑动 保存下来每次的最大值

class Solution {
    public int maxArea(int[] height) {
        int i = 0, j = height.length - 1, res = 0;
        while(i < j){
            res = height[i] < height[j] ? 
                Math.max(res, (j - i) * height[i++]): 
                Math.max(res, (j - i) * height[j--]); 
        }
        return res;
    }
}

动态规划

这个方法超出时间限制 不通过 主要看思想
双层循环 计算每一个dp[i][j]的大小 所以会超时

class Solution {
    public int maxArea(int[] height) {
    int len = height.length;
    if(len<2 || height==null) return 0;
    int[][] dp = new int[len][len];
    int i = 0;
    int j = 1;
    int initJ = 1;
    while (j < len) {
        while (i < len && j < len) {
            if (i + 1 == j) {
                dp[i][j] = Math.min(height[i], height[j]);
            } else {
                dp[i][j] = Math.max(dp[i][j - 1], Math.max(dp[i + 1][j], (j - i) * Math.min(height[i], height[j])));
            }
            i++;
            j++;
        }
        i = 0;
        initJ++;
        j = initJ;
    }
    return dp[0][len - 1];
    }
}

递归

class Solution {
    // maxArea(i, j) where j - i == 1 = min(h[i], h[j])
    // maxArea(i, j) = max(
    //.   [(j - i) * min(h[i], h[j]),
    //.    // We can omit one of below.
    //.    maxArea(i+1, j),
    //.    maxArea(i, j-1)])
    int maxAreaWork(int[] height, int i, int j) {
        if (j - i == 1) return Math.min(height[i], height[j]);
        
        int primaryChoose = (j-i)*Math.min(height[i], height[j]);
        int secondaryChoose = height[i] > height[j] 
            ? maxAreaWork(height, i, j-1) 
            : maxAreaWork(height, i+1, j);
        return Math.max(primaryChoose, secondaryChoose);
    }
    
    public int maxArea(int[] height) {
        return maxAreaWork(height, 0, height.length - 1);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值