编辑距离
一 What’s this?
编辑距离指的是将一个字符串 aaa 通过 111.删除一个字符 2.2.2.插入一个字符 3.3.3.将一个字符改为另一个字符 这三种操作变为字符串bbb 的最小操作次数。
二 解法
dp[i][j]dp[i][j]dp[i][j] 为 aaa 的前 iii 个变为 bbb 的前 jjj 个需要的最小操作次数
dp[0][i]=i,dp[i][0]=idp[0][i] =i,dp[i][0] =idp[0][i]=i,dp[i][0]=i
dp[i][j]=min(min(dp[i−1][j]+1,dp[i][j−1]+1),f[i−1][j−1]+(a[i]==a[j]))dp[i][j]=\min(\min(dp[i-1][j]+1,dp[i][j-1]+1),f[i-1][j-1]+(a[i]==a[j]))dp[i][j]=min(min(dp[i−1][j]+1,dp[i][j−1]+1),f[i−1][j−1]+(a[i]==a[j]))
dp[i−1][j]+1dp[i-1][j]+1dp[i−1][j]+1表示的是进行删操作
dp[i][j−1]+1dp[i][j-1]+1dp[i][j−1]+1表示的是进行加操作
三 code
cin>>a>>b;
lena=strlen(a);lenb=strlen(b);
for(int i=lena;i>=1;i--) a[i]=a[i-1];
for(int i=lenb;i>=1;i--) b[i]=b[i-1];//初始化
for(int i=0;i<=lena;i++) f[i][0]=i;
for(int i=0;i<=lenb;i++) f[0][i]=i;//边界状态 因为将A串无字符变到B串i个字符时需要加i个字符 B串无字符时同理
for(int i=1;i<=lena;i++){
for(int j=1;j<=lenb;j++){
k=1;//在后面会用到 方便‘改’的操作
if(a[i]==b[j]) k=0;
f[i][j]=min(min(f[i-1][j]+1,f[i][j-1]+1),f[i-1][j-1]+k);//若当前A、B串指向字符相等则不进行‘改’的操作
}
}
3168

被折叠的 条评论
为什么被折叠?



