编辑距离算法

编辑距离

一 What’s this?

 编辑距离指的是将一个字符串 aaa 通过 111.删除一个字符 2.2.2.插入一个字符 3.3.3.将一个字符改为另一个字符 这三种操作变为字符串bbb 的最小操作次数。

二 解法

dp[i][j]dp[i][j]dp[i][j]aaa 的前 iii 个变为 bbb 的前 jjj 个需要的最小操作次数

dp[0][i]=i,dp[i][0]=idp[0][i] =i,dp[i][0] =idp[0][i]=i,dp[i][0]=i

dp[i][j]=min⁡(min⁡(dp[i−1][j]+1,dp[i][j−1]+1),f[i−1][j−1]+(a[i]==a[j]))dp[i][j]=\min(\min(dp[i-1][j]+1,dp[i][j-1]+1),f[i-1][j-1]+(a[i]==a[j]))dp[i][j]=min(min(dp[i1][j]+1,dp[i][j1]+1),f[i1][j1]+(a[i]==a[j]))

dp[i−1][j]+1dp[i-1][j]+1dp[i1][j]+1表示的是进行删操作

dp[i][j−1]+1dp[i][j-1]+1dp[i][j1]+1表示的是进行加操作

三 code

cin>>a>>b;
    lena=strlen(a);lenb=strlen(b);
    for(int i=lena;i>=1;i--) a[i]=a[i-1];
    for(int i=lenb;i>=1;i--) b[i]=b[i-1];//初始化
    for(int i=0;i<=lena;i++) f[i][0]=i;
    for(int i=0;i<=lenb;i++) f[0][i]=i;//边界状态 因为将A串无字符变到B串i个字符时需要加i个字符 B串无字符时同理
    for(int i=1;i<=lena;i++){
        for(int j=1;j<=lenb;j++){
            k=1;//在后面会用到 方便‘改’的操作
            if(a[i]==b[j]) k=0;
            f[i][j]=min(min(f[i-1][j]+1,f[i][j-1]+1),f[i-1][j-1]+k);//若当前A、B串指向字符相等则不进行‘改’的操作
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值