【算法】编辑距离

编辑距离是一个很常见的文本相似匹配的算法(仅从字面意义上衡量)。

定义:对两个文本A和B,将A经过一下操作

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

得到B,所使用的最少操作数。

下面以两个英文单词的编辑距离为例,来分析算法的求解思路:

对两个单词A和B有以下几种情况:

  1. 对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;
  2. 同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;
  3. 对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

因此,在两个单词之间操作,最终可以归纳到三种操作:

  1. 在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;
  2. 在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;
  3. 修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)。

注意:为什么我们总是在单词 A 和 B 的末尾插入或者修改字符,能不能在其它的地方进行操作呢?答案是可以的,但是我们知道,操作的顺序是不影响最终的结果的。例如对于单词 cat,我们希望在 c 和 a 之间添加字符 d 并且将字符 t 修改为字符 b,那么这两个操作无论为什么顺序,都会得到最终的结果 cdab。

而上面的分析中的编辑距离a和b,可以继续往前推导,利用最初状态求解,即从空字符串转换到一个非空字符串的距离。如:

  • 字符串 A 为空,字符串B为ro,则从A 转换到B,显然编辑距离为字符串 B 的长度,这里是 2;
  • 字符串 A 为horse,字符串 B 为空,如从A转换到B,显然编辑距离为字符串 A 的长度,这里是 5。

因此,我们就可以使用动态规划来解决这个问题了。我们用 D [ i ] [ j ] D[i][j] D[i][j]表示 A 的前 i i i个字母和 B 的前 j j j个字母之间的编辑距离。其结果计算如下:

  • D [ i ] [ j − 1 ] D[i][j-1] D[i][j1] 为A的前 i i i 个字符和 B 的前 j − 1 j - 1 j1 个字符编辑距离的子问题。即对于 B 的第 j j j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D [ i ] [ j ] D[i][j] D[i][j] 最小可以为 D [ i ] [ j − 1 ] + 1 D[i][j-1] + 1 D[i][j1]+1
  • D [ i − 1 ] [ j ] D[i-1][j] D[i1][j] 为 A 的前 i − 1 i - 1 i1 个字符和 B 的前 j j j 个字符编辑距离的子问题。即对于 A 的第 i i i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D [ i ] [ j ] D[i][j] D[i][j] 最小可以为 D [ i − 1 ] [ j ] + 1 D[i-1][j] + 1 D[i1][j]+1
  • D [ i − 1 ] [ j − 1 ] D[i-1][j-1] D[i1][j1] 为 A 前 i − 1 i - 1 i1 个字符和 B 的前 j − 1 j - 1 j1 个字符编辑距离的子问题。即对于 B 的第 j j j 个字符,我们修改 A 的第 i i i 个字符使它们相同,那么 D [ i ] [ j ] D[i][j] D[i][j] 最小可以为 D [ i − 1 ] [ j − 1 ] + 1 D[i-1][j-1] + 1 D[i1][j1]+1。特别地,如果 A 的第 i i i 个字符和 B 的第 j j j个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下, D [ i ] [ j ] D[i][j] D[i][j] 最小可以为 D [ i − 1 ] [ j − 1 ] D[i-1][j-1] D[i1][j1]

最后可以得到状态转移方程:

  1. 若 A 和 B 的最后一个字母相同: D [ i ] [ j ] = m i n ( D [ i ] [ j − 1 ] + 1 , D [ i − 1 ] [ j ] + 1 , D [ i − 1 ] [ j − 1 ] ) D[i][j]=min(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1]) D[i][j]=min(D[i][j1]+1,D[i1][j]+1,D[i1][j1])
  2. 若 A 和 B 的最后一个字母不同: D [ i ] [ j ] = 1 + m i n ( D [ i ] [ j − 1 ] , D [ i − 1 ] [ j ] , D [ i − 1 ] [ j − 1 ] ) D[i][j]=1 + min(D[i][j−1],D[i−1][j],D[i−1][j−1]) D[i][j]=1+min(D[i][j1],D[i1][j],D[i1][j1])

代码实现:

def minDistance(str1, str2):
	m, n = len(str1), len(str2)
	if m * n == 0:
		return 0
	dp = [[0 for _ in range(n+1)] for _ in range(m+1)]
	for i in range(1, m+1):
		dp[i][0] = i
	for i in range(1, n+1):
		dp[0][i] = i
	for i in range(1, m+1):
		for j in range(1, n+1):
			if str[i-1] == str2[j-1]:
				dp[i]][j] = min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1])
			else:
				dp[i]][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
	return dp[m][n]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值