最新版《黑神话悟空》电脑配置要求(保姆级讲解)

在苦等几年后,《黑神话:悟空》终于上市了,作为今年最受期待的大作之一,估计很多人都想亲自上手,试一试这款游戏到底有几斤几两,是否值得我们等待数年。

不过在畅玩《黑神话:悟空》之前,还得考虑一个问题:电脑配置够吗?作为一个用虚幻5引擎打造的游戏,《黑神话:悟空》的画质即使在全球范围内都相当能打,以至于让许多玩家都担心自己的电脑能不能跑起来。

有意思的是,在从游戏科学(《黑神话:悟空》的开发商)提供的配置要求来看,兼容的硬件范围非常大。最低配置要求仅是i5-8400/Ryzen 5 1600+GTX 1060/RX 580,推荐配置则是i7-9700/Ryzen 5 5500+RTX 2060/RX 5700 XT/Arc A750。
在这里插入图片描述

简单解释一下,最低配置中的硬件分别在2016和2017年上市,而且即使在当年也只能算是中端入门级的显卡,并非什么高端型号。如果按照最低配置要求来购买硬件,当场组装一台玩黑神话的电脑,成本不会超过1000。

而推荐配置其实也高不到哪去,基本是几年前的硬件,并且都是中端硬件,并非什么旗舰显卡和旗舰处理器,只是按二手价格来算的话,确实要比最低配置贵上不少,不过粗略算了下,估计3000以内也可以拿下。

如此看来,似乎成本也不高?非也,最低和推荐配置,某种程度上来说只是中画质和高画质下,玩家能够以1080P分辨率流畅运行游戏的最低标准,而非最高/最佳标准。

而且,虚幻5的实力自然远不止于此,实际上在此前的性能测试中,即使是RTX 4090这样的顶级显卡,在不开启DLSS等辅助功能时,最高画质+最高光追+4K分辨率的设置下,连60帧都跑不满。
在这里插入图片描述

《黑神话:悟空》的上下限非常高,所以小雷也产生了一个好奇,目前主流的中高端显卡,在实际游戏中表现到底如何呢?畅玩最高画质,到底需要怎样的配置呢?

影视级画质,居然只要这个配置就够了?
既然是画质测试,那么自然没必要从低中高一点点来测试了,直接上最高的「影视级」画质,这次选择了两款不同的显卡,分别是RX 7900XT(AMD次旗舰级显卡),以及RTX 3070(英伟达上代主力显卡),在2K和4K分辨率下,这些显卡的各自表现到底如何呢?

首先来看看RTX 3070,虽然已经停产,但是目前二手的售价在1700-1900之间,在不考虑DLSS 3.0加持的情况下,其性能甚至比RTX 4060Ti还要更高一些,可以说是一款性价比很不错的游戏显卡。

而在性能测试中,RTX 3070的表现也没有让我失望,在2K分辨率下,FSR模式+帧生成,超采样精度75,影视级画质且调整阴影质量、植被质量和反射质量后。平均帧数为73,最高帧数为90,最低帧数为62,看起来已经满足2K60Hz的流畅游戏标准,但是实际游玩时情况又是否如此呢?
在这里插入图片描述
实际上,在以这个配置进入游戏后,在开局的孙悟空大战二郎真君的场景中,帧数基本在30-40fps左右,仅为测试时的一半。不过,在结束云上大战场景,回到普通场景后,帧数就迅速回到了与测试时接近的数值,稳定在70-80fps之间,基本上可以无压力流畅游玩。在这里插入图片描述
着开启全景光追并设置为「超级」后,RTX 3070的表现就有点悲剧了,平均帧数仅34,最低帧数甚至只有25,只能说勉强达到流畅的最低标准。而在「中」和「低」两档设置里,帧数表现则好了很多,平均帧数分别达到了52和53,最低帧数也有43和46,几乎没有区别。
先写到这里,更多内容后面再更新
给爱玩游戏的兄弟们推荐免费下各类3A游戏链接 https://www.clovelu.cn

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我也不想摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值