AI时代的加速器:NPU与GPU的性能对决与应用解析!

人工智能的硬件和软件应用已经发展到专为优化人工智能和神经网络操作而设计。其中包括神经处理单元(NPU),它们在加速AI任务方面经常被与图形处理单元(GPU)进行比较。NPU是专为最快速度执行尖端AI/ML任务而设计的日益常见的硬件。但它们之间有何不同呢?
在这里插入图片描述
让我们简要地探讨一下NPU和GPU,比较它们的差异,并研究各自的优点和缺点。

什么是NPU?

NPU代表神经处理单元。NPU是一种专为优化与人工智能和神经网络相关的任务性能而设计的专用硬件。
在这里插入图片描述
这可能会让NPU听起来像是应该出现在研究实验室和军事基地的东西,但NPU——尽管是一项相对较新的发明——正变得越来越普遍。不久的将来,你将开始在桌面和笔记本电脑中看到NPU,而且大多数现代智能手机已经在它们的主CPU中集成了NPU,包括过去几年的iPhone、Google Pixel和三星Galaxy型号。
在这里插入图片描述
神经处理单元有助于支持神经引擎和网络算法,这些算法被用于高度先进的领域,如自动驾驶和自然语言处理(NLP),以及像手机上的面部识别、语音识别和图像处理等日常应用。

什么是GPU?

GPU代表图形处理单元。最初是为渲染视频游戏中的图形和多媒体应用而开发的,GPU的用途已经显著发展,现在它们被用于许多需要并行处理管理复杂计算的不同应用中。

GPU的独特优势在于它们能够快速而高效地同时执行成千上万的小任务。这使得它们特别擅长于同时进行许多计算的复杂任务,例如渲染图形,模拟物理,甚至训练神经网络。

NPU与GPU:差异

从架构上讲,NPU比GPU更适合于并行处理。NPU具有比GPU更多的较小处理单元。NPU还可以结合专门的内存层次结构和数据流优化,使得处理深度学习工作负载特别高效。与NPU相比,GPU具有更多的多功能核心。从历史上看,这些核心通过并行处理被用于各种计算任务,但NPU特别适合神经网络算法。
在这里插入图片描述
NPU特别擅长处理短期和重复的任务。集成到现代计算系统中的NPU可以减轻GPU处理神经网络固有的矩阵运算的负担,并让GPU去处理渲染任务或通用计算。

与GPU相比,NPU更适合用于在依赖于密集深度学习计算的任务中。在NLP、语音识别和计算机视觉等应用中,NPU相对于GPU表现更出色。GPU比NPU具有更多的通用架构,并且在处理大规模语言模型或边缘计算应用方面可能难以与NPU竞争。

NPU与GPU:性能

并排比较时,NPU和GPU在性能上的最大差异在于效率和电池寿命。由于NPU是专门为神经网络操作而设计的,它们在与GPU相当的速度下执行相同过程所需的功率要少得多。

这种比较更多地是对神经网络的当前复杂性和应用的陈述,而不是两种硬件之间的架构差异。NPU在架构上针对AI/ML工作负载进行了优化,在处理深度学习推理和训练等最复杂的工作负载方面超越了GPU。

NPU中用于矩阵乘法和激活函数的专用硬件意味着它们在实时语言翻译、自动驾驶车辆中的图像识别以及医疗应用中的图像分析等任务中,与GPU相比实现了更优越的性能和效率。
在这里插入图片描述
集成挑战和存储需求

在企业层面,NPU可以集成到现有的基础设施和数据处理流程中。NPU可以与CPU、GPU以及其他加速器一同部署在数据中心内,以实现AI任务的最大计算性能。然而,当所有AI/ML处理元素都被整合到企业数据中心运行中时,可能会出现数据访问和存储的危险。

完全优化的NPU和GPU处理AI/ML工作负载时,数据处理速度可能非常快,以至于传统存储系统可能难以跟上,从而导致数据检索和处理的潜在瓶颈。

在应用中,NPU并不要求特定的存储空间,但是,要使它们以最高效率运行,就需要它们能够极快地访问大量数据集。处理AI/ML工作负载的NPU通常需要大量的数据来训练和推理出准确的模型,以及非常快速地排序、访问、更改和存储这些数据的能力。企业级的解决方案包括闪存存储和全面管理的存储基础设施。

最后
总之,NPU是专为执行神经网络操作而设计和架构的,使它们在处理与AI/ML操作相关的小型和重复任务时特别有效。

从表面上看,GPU听起来很相似:被设计用于同时执行小型操作的硬件组件。然而,由于NPU针对矩阵乘法和激活函数等任务进行了优化,它们在神经工作负载方面具有明显优势。这使得NPU在处理深度学习计算方面优于GPU,特别是在效率和速度方面。

随着AI和机器学习技术的不断发展,预计NPU在数据中心的应用将会逐渐增加。随着NPU技术的进步和生态系统的成熟,它们可能会在未来的数据中心中扮演更重要的角色。

**赋创(EMPOWERX)**作为高性能计算领域的先锋,一直致力于推动技术创新,我们会及时关注最前沿的科技动态,为客户提供高效、可靠的计算解决方案。

如果您对服务器市场有进一步的问题或需要更详细的信息,请随时私信我们【4006-997-916 / 0755-86936235】。​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值