Nvidia的H20 GPU又赚翻了!每季度增加50%

Nvidia在2023年和2024年的业绩飙升,主要得益于人工智能领域对GPU的爆炸性需求,这一需求特别在美国、中东国家和中国表现显著。然而,由于美国实施的出口限制,Nvidia无法在没有政府出口许可的情况下,将其最高端的Hopper H100、H200和H800处理器出售给中国。因此,公司转而将削减版的H20 GPU出售给中国实体。

据相关报道,英伟达的 H20 芯片在中国市场曾被预估将有强劲的销售表现 。尽管受到美国出口管制的限制,但英伟达专门为中国市场设计的定制版 H20 芯片,仍有望在 2024 年实现向中国交付超过 100 万颗,销售额预计达到 120 亿美元.
在这里插入图片描述
尽管H20 GPU是削减版,但其销售表现却异常出色。H20 芯片基于 Hopper 架构,配备了 96GB 的 HBM3 存储器,运行速度可以达到 4.0TB/s,功耗 400w. 其算力方面,int8/fp8 tensor 算力为 296T,bf16/fp16 tensor 算力为 148T,fp32 算力为 44T,fp64 算力为 1T。这样的性能参数使得 H20 在 8 位整数和 8 位浮点计算方面具有较高的计算效率和能效比,能够同时处理大量并行和较低精度计算的应用,如深度学习和某些科学模拟。这些技术规格使得H2O GPU在高性能计算和人工智能领域具备了极强的竞争力,尤其是在对计算密集型任务有高需求的行业。
在这里插入图片描述
尽管H20 GPU是削减版,但其销售表现却异常出色。分析师Claus Aasholm指出:“通过了中国禁令的降级版H20系统表现非常好,环比增长50%,这是Nvidia最成功的产品。相比之下,H100业务‘仅’环比增长25%。”根据Aasholm的发现,尽管HGX H20 GPU的性能与成熟的H100相比有所下降,但Nvidia仍通过销售该GPU赚取了数百亿美元。人工智能无疑是推动几乎所有类型数据中心硬件销售的大趋势,Nvidia的Hopper GPU系列,包括H20,均受益于此。
在这里插入图片描述
世界主要经济体——美国和中国——正在竞相获得最大的人工智能能力。对于美国而言,增长似乎水到渠成:更多的资金和更多的硬件意味着更高的能力。然而,这还不够。以OpenAI为例,尽管它已经赚了数十亿美元,但仍需要更多的资金来购买更多的硬件,以提升人工智能的训练和推理能力。

尽管存在种种限制,但中国的人工智能能力(无论是硬件还是大型模型开发)仍在不断扩大。上周,中国人工智能公司Deepseek在一篇论文中透露,它已经在2048个Nvidia H800 GPU的集群上训练了其6710亿参数的DeepSeek-V3 Mixture-of-Expert(MoE)语言模型,耗时两个月,共计280万个GPU小时。相比之下,Meta投入了11倍的计算资源(3080万个GPU小时)来训练拥有4050亿个参数的Llama 3,耗时54天,使用了16384个H100 GPU。
在这里插入图片描述
面对外部压力,中国内部也加速了国产GPU的研发进程。近年来,华为、寒武纪、壁仞、摩尔线程等公司在GPU领域取得了一定的进展,推出了多款具有竞争力的国产GPU。随着时间的推移,本土的加速器可能会逐渐蚕食Nvidia目前在中国数据中心的近乎垄断地位。然而,这一过程不可能一蹴而就,Nvidia在中国市场的地位仍将在一段时间内保持稳定。
在这里插入图片描述
英伟达的 H20 芯片在中国市场的销售轨迹,深刻映射出中国对 GPU 旺盛且多元的需求态势,尤其是在人工智能、大数据分析、图形渲染等领域。然而,随着美国禁售令的实施,市场面临一定的不确定性。中国GPU市场可能会经历一段调整期,但也为国产GPU的崛起提供了机会。

### Nvidia H20与其他产品的性能特征对比 #### 特性概述 Nvidia H20作为一款高性能计算平台,在机器学习和人工智能领域提供了卓越的支持。该平台不仅具备强大的硬件加速能力,还集成了多种软件工具和服务,旨在简化开发流程并提升模型训练效率[^1]。 #### 性能指标分析 当考量不同产品间的性能差异时,主要关注以下几个方面: - **处理速度**:H20凭借其先进的架构设计实现了更快的数据吞吐量以及更低延迟的表现;相比之下,某些竞争对手可能依赖于传统CPU/GPU组合方案,在复杂任务面前显得力不从心。 - **能耗比**:高效节能是现代数据中心追求的目标之一。H20通过优化电源管理机制有效降低了单位算力消耗的能量成本,这使得长期运行更加经济实惠。 - **扩展性和兼容性**:对于大规模分布式应用而言,良好的互操作性至关重要。H20支持广泛的编程接口标准,并且能够轻松集成到现有的基础设施当中去,从而为企业级用户提供灵活多样的部署选项。 ```python import matplotlib.pyplot as plt # 假设数据用于展示图表 products = ['Product A', 'Product B', 'Nvidia H20'] speeds = [85, 90, 97] power_efficiency = [60, 70, 85] plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.bar(products, speeds, color='blue') plt.title('Processing Speed Comparison') plt.subplot(1, 2, 2) plt.bar(products, power_efficiency, color='green') plt.title('Power Efficiency Rating') plt.show() ``` 上述代码片段展示了如何利用Python绘制柱状图来直观呈现各款产品之间的处理速度及功耗效能方面的区别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值