函数与极限
1.函数
1.1定义
函数f是从一个集合D(称为定义域,D包含于实数集R)到另一个集合Y(称为值域)的映射。对于定义域中的每一个元素x,函数f都指定了一个唯一的元素y在值域中,记作:
y=f(x),x∈X
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有xx 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数f(x)f(x)在定义域内所有可能的yy 值的集合。
确定定义域和值域的方法
定义域:
代数方法:通过分析函数的表达式,确定哪些xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
图形方法:通过绘制函数的图形,观察x轴上的范围,确定定义域。
值域:
代数方法:通过分析函数的表达式,确定f(x)的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在−1和1之间。
图形方法:通过绘制函数的图形,观察y轴上的范围,确定值域。
常见函数类型
1.线性函数:
f(x)=ax+b 其中a和b是常数。
2.多项式函数:
f(x)=a{n}x^{n}+a{n−1}x^{n−1}+⋯+a{1}x+a{0} 其中ai是常数。
3.指数函数:
f(x)=a^{x} 其中a>0且a≠1。
4.对数函数:
f(x)=x 其中a>0且a≠1。
5.三角函数:如正弦函数f(x)=sin(x),余弦函数f(x)=cos(x),正切函数f(x)=tan(x)等。
6.反三角函数:如反正弦函数f(x)=arcsin(x),反余弦函数f(x)=arccos(x),反正切函数f(x)=arctan(x)等。
7.符号函数:
1.2函数的特性
有界性
上界
下界
有界:
一个函数f(x)在其定义域D上称为有界的,如果存在两个实数M和m,使得对于定义域中的任意x,都有:
m≤f(x)≤M
其中:M称为函数的上界,m称为函数的下界。
函数与极限
1.函数
1.1 定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作: y=f(x),x∈X
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。
函数的两要素是指函数的定义域和值域。
定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。
值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。
确定定义域和值域的方法
定义域:
代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
值域:
代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
分类
根据函数的有界性,可以分为以下几种情况:
有界函数:如果函数f(x)在其定义域D上既有上界又有下界,则称f(x)是有界函数。
无界函数:如果函数f(x)在其定义域D上没有上界或没有下界,则称f(x)是无界函数
单调性
定义
一个函数f(x)在其定义域D上称为单调的,如果对于定义域中的任意x1和x2,当x1<x2时
单调递增:如果f(x1)≤f(x2),则函数f是单调递增的。
严格单调递增:如果f(x1)<f(x2),则函数f是严格单调递增的。
单调递减:如果f(x1)≥f(x2),则函数f是单调递减的。
严格单调递减:如果f(x1)>f(x2),则函数f是严格单调递减的。
单调递减函数:
函数f(x)=−x:在实数范围内,f(x)=−x是严格单调递减的,因为对于任意x1<x2,都有f(x1)>f(x2)。
函数
g(x)=x
在x>0的范围内,该函数是严格单调递减的,因为对于任意x1<x2,都有g(x1)>g(x2)。
3奇偶性
定义
一个函数f(x)在其定义域D上称为:
偶函数:如果对于定义域中的任意x,都有f(−x)=f(x),则函数f是偶函数。偶函数的图形关于y轴对称。
奇函数:如果对于定义域中的任意x,都有f(−x)=−f(x),则函数f是奇函数。奇函数的图形关于原点对称。
4周期性
定义
一个函数f(x)在其定义域D上称为周期函数,如果存在一个正数T,使得对于定义域中的任意x,都有:
f(x+T)=f(x)
其中T称为函数的周期。如果存在最小的正数T满足上述条件,则称T为函数的最小正周期。
3反函数
定义
给定一个函数f:X→Y,如果存在一个函数g:Y→X,使得对于X中的每一个x,都有g(f(x))=x,并且对于Y中的每一个y,都有f(g(y))=y,则称g为f的反函数,记作
f^{-1}
换句话说,反函数
f^{−1}
满足以下两个条件:
对于X中的每一个x,有
f^{−1}(f(x))=x
对于Y中的每一个y,有
f(f^{−1}(y))=y
注意:原函数和反函数是关于y=x对称的。
存在条件
一个函数f存在反函数的充分必要条件是f是双射(即一一对应)。具体来说:
一一对应:对于X中的任意两个不同的元素x1和x2,都有f(x1)≠f(x2)。
满射:对于Y中的每一个元素y,都存在X中的一个元素x,使得f(x)=y。
不存在反函数的函数:
函数f(x)=x2:在实数范围内,f(x)=x2不是双射,因为f(x)=f(−x),所以不存在反函数。
函数g(x)=sin(x):在实数范围内,g(x)=sin(x)不是双射,因为sin(x)是周期函数,所以不存在反函数。
求解反函数
求函数的反函数通常涉及以下步骤。假设我们有一个函数f:X→Y,我们希望找到它的反函数
f^{−1}:Y→X
。以下是详细的求解过程:
步骤1:验证函数是否存在反函数
首先,需要验证函数f是否是双射(即一一对应)。只有当f是双射时,它才存在反函数。
步骤2:解方程y=f(x)
假设y=f(x),我们需要解这个方程来找到x的表达式。具体来说,我们需要将x表示为y的函数:x=g(y)。
步骤3:交换x和y
在得到x的表达式后,将x和y互换,得到反函数
x=f^{−1}(y)
。
步骤4:验证反函数
最后,验证反函数是否满足反函数的定义,即:
对于X中的每一个x,有
f^{−1}(f(x))=x
对于Y中的每一个y,有
f(f^{−1}(y))=y
极限
1数列极限
定义
一个数列{an}的极限是L,如果对于任意给定的正数ϵ,总存在一个正整数N,使得对于所有n>N,都有:
∣a_n−L∣<ϵ
换句话说,当n足够大时,数列的项an可以无限接近L。此时,我们称数列{an}收敛于L
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质
唯一性:如果数列{an}收敛,则其极限是唯一的。
有界性:如果数列{an}收敛,则它是有界的。
保序性:如果数列{an}和{bn}都收敛,且对于所有n,都有an≤bn,则
四则运算:如果数列{an}和{bn}都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定
直接法:
通过分析数列的通项公式,直接计算其极限。
夹逼定理:
如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且
则
2函数的极限
定义
设函数f(x)在点x=a的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数ϵ(无论它多么小),总存在正数δ,使得当0<∣x−a∣<δ时,有
∣f(x)−L∣<ϵ
则称L为函数f(x)当x趋近于a时的极限,记作
性质
唯一性:如果极限存在,那么它是唯一的。
局部有界性:如果
,则存在M>0,δ>0,使得f(x)在0<∣x−a∣<δ内有界,即
|f(x)|M
局部保号性:如果
且L>0(或L<0),则存在δ>0,使得f(x)>0(或f(x)<0)在0<∣x−a∣<δ内成立。
极限的计算
代入法:如果f(x)在x=a处连续,则
极限运算法则:如果
夹逼定理:如果f(x)≤g(x)≤h(x)在x=a的某个去心邻域内成立,且
单侧极限
左极限:如果
,则称L为f(x)在x趋近于a时的左极限。
右极限:如果
则称L为f(x)在x趋近于a时的右极限
存在,则左极限和右极限都存在且相等。
3无穷大与无穷小
无穷大:如果对于任意大的正数M,总存在正数δ,使得当0<∣x−a∣<δ时,有∣f(x)∣>M,则称f(x)在x趋近于a时趋向于无穷大,
无穷大分为正无穷大和负无穷大。
无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
无穷小:如果
,则称f(x)在x趋近于a或趋近于∞时的无穷小。
运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
高阶无穷小
设α和β是两个无穷小量(即当x→a时,α→0且β→0)。
如果
,则称α是β的高阶无穷小,记作α=o(β)。即α的收敛速度比β快。
低阶无穷小
设α和β是两个无穷小量。
如果
,则称α是β的低阶无穷小。
同阶无穷小
设α和β是两个无穷小量。
如果
,则称α和β是同阶无穷小。
等价无穷小
设α和β是两个无穷小量(即当x→a时,α→0且β→0)。
如果
,则称α和β等价无穷小,记作α∼β。
k阶无穷小
设α和β是两个无穷小量,且
β=o(x^{k})当x→0
如果
,则称α是β的k阶无穷小。
4无穷大极限
函数f(x)当x趋于无穷大时,如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当∣x∣>X时,∣f(x)−A∣<ϵ,则我们说f(x)当x趋于无穷大时的极限是A。
具体分类:
- 当x→+∞时的极限:
如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当x>X时,∣f(x)−A∣<ϵ,则我们说f(x)当x→+∞时的极限是A,记作
2.当x→−∞时的极限:
如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当x<−X时,∣f(x)−A∣<ϵ,则我们说f(x)当x→−∞时的极限是A,记作
5极限存在准则
1单调有界准则
如果函数f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
洛必达法则:
假设f(x)和g(x)是两个函数,并且在某个点a的某个去心邻域内可导(即f′(x)和g′(x)存在),并且g′(x)≠0在这个去心邻域内。如果:
如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。
2夹逼定理
如果f(x)≤g(x)≤h(x)在x=a的某个去心邻域内成立,且
函数的连续性
1连续性
在某点的连续性:
设函数f(x)在点x=a的某个邻域内有定义。如果
,则称函数f(x)在点x=a处连续。
左连续:
设函数f(x)在点x=a的左侧有定义(即存在一个δ>0,使得(a−δ,a)内的所有x都有定义)。
如果
,则称函数f(x)在点x=a处左连续。
右连续:
设函数f(x)在点x=a的右侧有定义(即存在一个δ>0,使得(a,a+δ)内的所有x都有定义)。
如果
,则称函数f(x)在点x=a处右连续。
连续的充要条件
函数连续的充要条件:函数左右连续。
在区间的连续性:
如果函数f(x)在区间(a,b)内的每一点都连续,则称函数f(x)在区间(a,b)内连续。
如果函数f(x)在区间[a,b]内的每一点都连续,并且在左端点x=a处右连续,在右端点x=b处左连续,则称函数f(x)在区间[a,b]上连续。
局部性质:
如果函数f(x)在点x=a处连续,则f(x)在x=a的某个邻域内有界。
全局性质:
如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上有界。
如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上达到最大值和最小值。
如果函数f(x)在区间[a,b]上连续,并且f(a)和f(b)异号,则存在c∈(a,b)使得f(c)=0(零点定理,后边会讲)。
2不连续点
定义
\begin{cases}在a处函数极限不存在\\在a处函数无定义\\在a处极限不等于函数值\end{cases}
可去不连续点:
如果
\lim_{x\rightarrowa}f(x)
存在且有限,但f(a)不存在或
f(a)≠\lim_{x\rightarrowa}f(x)
,则称x=a是f(x)的可去不连续点。
如:
y=\dfrac{x^{2}-1}{x-1}
在x-->1时,简化等式:
y=\dfrac{x^{2}-1}{x-1}=x+1
\lim_{x\rightarrow1}(x+1)=2=f(2)
但是在x=1处,y无意义,所以x=1是y的可去不连续点。
跳跃不连续点:
如果
\lim_{x\rightarrowa^{-}}f(x)和\lim_{x\rightarrowa^{+}}f(x)
都存在且有极限,但
\lim_{x\rightarrowa^{-}}f(x)≠\lim_{x\rightarrowa^{+}}f(x)
,则称x=a是f(x)的跳跃不连续点。
函数
f(x)=\begin{cases}1&x\geq0\\0&x<0\end{cases
在x=0处,左极限
\lim_{x\rightarrow0^{-}}f(x)=0
,右极限
\lim_{x\rightarrow0^{+}}f(x)=1
,函数值f(0)=1。
因此,函数在x=0处是跳跃不连续点。
无穷不连续点:
如果
\lim_{x\rightarrowa}f(x)
不存在或为无穷大,则称x=a是f(x)的无穷不连续点。
如:y=tanx,x在π/2处为无穷大,所以x=π/2是f(x)的无穷不连续点。
3闭区间连续函数性质
零点定理:(后边会用)
设函数f(x)在闭区间[a,b]上连续,并且f(a)和f(b)异号(即f(a)⋅f(b)<0),则存在c∈(a,b)使得f(c)=0。
介值定理:(后边会用)
设函数f(x)在闭区间[a,b]上连续,并且f(a)≠f(b)。对于任意介于f(a)和f(b)之间的数k(即min(f(a),f(b))<k<max(f(a),f(b))),存在c∈(a,b)使得f(c)=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
零点定理可以看作是介值定理在k=0时的特例。
如果f(a)和f(b)异号,则0介于f(a)和f(b)之间,因此存在c∈(a,b)使得f(c)=0。
导数
概念
速度角度:
在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数f(t1)表示物体在时间t1的位置,f(t2)表示物体在时间t2的位置,那么在t1到t2时间段内,物体移动的距离为f(t2)-f(t1),平均速度为:
物体在t1的瞬时速度接近于:
也就是说当t2无限接近于t1时的速度。
切线角度
假设我们有一个函数f(x),其图像是一条曲线。我们想要了解这条曲线在某一点x=a处的变化情况。
首先,考虑曲线上的两个点(a,f(a))和(b,f(b)),其中b是接近a的另一个点。连接这两个点的直线称为割线。割线的斜率可以表示为:
接下来,我们让点b逐渐接近点a,即b→a。在这个过程中,割线的斜率会逐渐接近曲线在点(a,f(a))处的切线的斜率。
当b无限接近a时,割线的斜率就变成了曲线在点(a,f(a))处的切线的斜率:
1导数定义
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作
其中:
-Δx是一个很小的增量,表示x的变化量。
f(x_{0}+Δx)
是x在x0点增加Δx后的函数值。
-f(x0)是x在x0点的函数值。
是函数在x=x0处的平均变化率。
-
\lim_{Δx\rightarrow0}
表示当Δx趋近于0时的极限。
-平均变化率:在x=x0和x=x0+Δx之间,函数的平均变化率是
。这个比值表示函数在这段区间内的平均变化速度。
-瞬时变化率:当Δx趋近于0时,平均变化率的极限值就是函数在x=x0处的瞬时变化率,即导数f′(x0)。
2单侧导数
1左导数
函数f(x)在点x=a处的左导数定义为:
其中h→0−表示h从负方向趋近于0。
2右导数
函数f(x)在点x=a处的右导数定义为:
其中h→0+表示h从正方向趋近于0。
3导数的存在性
函数f(x)在点x=a处的导数f′(a)存在,当且仅当左导数和右导数都存在且相等:
f'(a)=f_{−}'(a)=f_{+}'(a)
例子
*f*(*x*)=∣*x*∣,计算其在x=0处的左导数和右导数。
解:
左导数:
右导数:
由于
f_{-}'(0)≠f_{+}'(0)
,所以f(x)=∣x∣在x=0处不可导。
导数的几何意义
1切线
由导数定义可知,f(x)在点(a,f(a))处的斜率:
所以切线方程可以表示为:
其中:
-y是切线上的点的纵坐标。
-f(a)是函数在点x=a处的值。
-f′(a)是函数在点x=a处的导数,即切线的斜率。
-x是切线上的点的横坐标。
-a是切点处的横坐标。
化简切线方程:
y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a)
将切线方程化简为标准形式y=mx+b,其中m是斜率,b是截距。
2法线
是与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为
法线方程的一般形式是:
其中:
-y是法线上的点的纵坐标。
-f(a是函数在点x=a处的值。
-f′(a)是函数在点x=a处的导数,即切线的斜率。
-x是法线上的点的横坐标。
-a是法线点处的横坐标。
化简法线方程:
将法线方程化简为标准形式y=mx+b,其中m是斜率,b是截距。
可导与连续的关系
1定义
连续性
一个函数f(x)在点x=a处连续,如果满足以下条件:
这意味着当x接近a时,函数值f(x)也接近f(a)。换句话说,函数在点x=a处没有跳跃或断裂。
可导性
一个函数f(x)在点x=a处可导,如果它在该点处的导数存在,即:
这意味着函数在点x=a处的变化率是有限的,并且有一个确定的值。
所以从连续和可导定义看出,可导的条件比连续的条件更严格。
2定理
可导性蕴含连续性
如果函数f(x)在点x=a处可导,那么它在点x=a处连续。
证明:如果函数f(x)在点x=a处可导,则
我们要证f(x)在点x=a处连续,需要证明
变换上述等式:
所以
连续性不一定蕴含可导性
可导性:
左导数:
f_{-}'(0)=\lim_{h\rightarrow0^{-}}\dfrac{f(h+0)-f(h)}{h}=\lim_{h\rightarrow0^{-}}\dfrac{-h-0}{h}=-1
右导数:
f_{+}'(0)=\lim_{h\rightarrow0^{+}}\dfrac{f(0+h)-f(h)}{h}=\lim_{h\rightarrow0^{+}}\dfrac{h-0}{h}=1
左右导数不相等,所以函数不是可导的。
求导公式
1求导规则
常数规则:
其中c是常数。
幂函数规则:
其中n是任意实数。
常数倍规则:
其中c是常数。
和差规则:
乘积规则:
商规则:
其中g(x)≠0。
链式法则(复合函数求导):
2常见函数的求导公式
指数函数:
其中a>0且a≠1。
对数函数:
其中a>0且a≠1。
三角函数:
反三角函数:
高阶导数
高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数f(x)的一阶导数是f′(x),那么二阶导数就是对一阶导数再求导,记作
。类似地,三阶导数是对二阶导数再求导,记作
,以此类推。
定义
对于一个函数f(x),其n阶导数定义为:
其中n是正整数。
隐函数求导
隐式方程是指函数关系不是显式地表示为y=f(x),而是表示为F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
dy/dx
隐函数求导的基本步骤
对方程两边求导:假设有一个隐式方程F(x,y)=0,我们对方程两边分别对x求导。
使用链式法则:在求导过程中,如果遇到y的函数,需要使用链式法则,将y视为x的函数。
通过求导得到的方程,解出dy/dx。
参数方程求导
参数方程是一种描述曲线的方法,其中曲线的x和y坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
x=f(t)
y=g(t)
其中t是参数。我们希望求出曲线的导数dy/dx。
参数方程求导的基本步骤
求x对t的导数:
求y对t的导数:
求dy/dx:
微分
定义
微分是函数在某个变化过程中的改变量的线性主要部分。
若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量
△y=f(x+△x)-f(x)
可以表示为
△y=f'(x)·△x+o(△x)
,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,
微分dy可以近似地表示为
dy=f'(x)△x
,它描述了函数值y随自变量x变化而变化的线性部分。
可微的充要条件
函数f(x)在点x=a处可微的充要条件是:
函数在点x=a处连续:
\lim_{x\rightarrowa}f(x)=f(a)
函数在点x=a处左右导数存在且相等:
f'_{-}(a)=f'_{+}(a)
简单来说,就是可微的充要条件是函数f(x)在点x=a处可导。
微分公式与法则
根据微分定义
dy=f'(x)dx
可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。
2拉格朗日中值定理
如果函数f(x)满足以下条件:
在闭区间[a,b]上连续。
在开区间(a,b)上可导。
那么,在开区间(a,b)内至少存在一点c,使得:
f′(c)=(f(b)-f(a))/(b-a)
拉格朗日中值定理的几何意义是:在区间[a,b]上,函数f(x)的图像上至少存在一点c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
3柯西中值定理
如果函数f(x)和g(x)满足以下条件:
在闭区间[a,b]上连续。
在开区间(a,b)上可导。
在开区间(a,b)内,g′(x)≠0。
那么,在开区间(a,b)内至少存在一点c,使得:
柯西中值定理的几何意义是:在区间[a,b]上,函数f(x)和g(x)的图像上至少存在一点c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
4洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即0/0型)或分子和分母都趋向于无穷大(即∞/∞型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数f(x)和g(x满足以下条件:
在点a的某个去心邻域内可导,且g′(x)≠0。
存在(或为无穷大),那么:
函数的单调性
函数的单调性可以通过其导数来判定:
递增函数:
如果函数f(x)在区间(a,b)上可导,并且对于区间(a,b)内的任意x,总有f′(x)≥0,则函数f(x)在区间(a,b)上是递增的。如果f′(x)>0,则函数f(x)在区间(a,b)上是严格递增的。
递减函数:
如果函数f(x)在区间(a,b)上可导,并且对于区间(a,b)内的任意x,总有f′(x)≤0,则函数f(x)在区间(a,b)上是递减的。如果f′(x)<0,则函数f(x)在区间(a,b)上是严格递减的。
函数的凹凸性
1函数凹凸性判定
函数的凹凸性可以通过其二阶导数来判定:
凹函数:
如果函数f(x)在区间(a,b)上二阶可导,并且对于区间(a,b)内的任意x,总有f′′(x)≥0,则函数f(x)在区间(a,b)上是凹的。
凸函数:
如果函数f(x)在区间(a,b)上二阶可导,并且对于区间(a,b)内的任意x*x*,总有f′′(x)≤0,则函数f(x)在区间(a,b)上是凸的。
2拐点
拐点是函数图像从凹变凸或从凸变凹的点。对于函数f(x),如果f′′(x)=0且f′′(x)在x的两侧符号相反,则x是函数的拐点。
极值
极值
是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。
如果存在一个区间(a,b),使得对于所有x∈(a,b),总有f(x)≤f(c),则称f(c)是函数f(x)在点c处的局部极大值。
如果存在一个区间(a,b),使得对于所有x∈(a,b),总有f(x)≥f(c),则称f(c)是函数f(x)在点c处的局部极小值。
最值
最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。
如果对于函数f(x)的整个定义域内的任意x,总有f(x)≤f(c),则称f(c)是函数f(x)的全局最大值。
如果对于函数f(x)的整个定义域内的任意x,总有f(x)≥f(c),则称f(c)是函数f(x)的全局最小值。
1极值的充分必要条件
必要条件
如果函数f(x)在点x=c处取得局部极大值或局部极小值,并且f(x)在x=c处可导,则f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
局部极大值:
如果f′(c)=0,并且在c的左侧f′(x)>0,在c的右侧f′(x)<0,则x=c是局部极大值。
局部极小值:
如果f′(c)=0,并且在c的左侧f′(x)<0,在c的右侧f′(x)>0,则x=c是局部极小值。
二阶导数判定法
局部极大值:
如果f′(c)=0,并且f′′(c)<0,则x=c是局部极大值。
局部极小值:
如果f′(c)=0,并且f′′(c)>0,则x=c是局部极小值。
不定积分
定义
如果函数F(x)满足F′(x)=f(x),则称F(x)是f(x)的一个原函数。不定积分f(x) dx
表示f(x)的所有原函数,通常写成:
f(x) dx=F(x)+C
其中,C是积分常数,表示原函数的不确定性。f(x)是被积函数,dx表示对x的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
基本积分公式
常数积分:
∫k dx=kx+C(其中k是常数)
幂函数积分:
∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中n≠−1)
指数函数积分:
∫e^{x} dx=e^{x}+C
∫a^{x} dx={a^{x}}/{lna}+C(其中a>0且a≠1)
对数函数积分:
∫1/xdx=ln∣x∣+C
三角函数积分:
∫sinx dx=−cosx+C
∫cosx dx=sinx+C
反三角函数积分:
换元积分法
1第一类换元积分法
选择合适的变量替换:
选择一个合适的变量替换u=g(x),使得积分变得更简单。
求导数:
求u对x的导数
,并将其改写为
du=g′(x) dx
替换积分变量:
将原积分中的x替换为u,并将dx替换为
求解新积分:
求解新的积分
∫f(u) du
回代变量:
将u回代为g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
2第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
选择合适的变量替换:
选择一个合适的变量替换x=g(t),使得积分变得更简单。
求导数:
求x对t的导数
,并将其改写为
dx=g′(t) dt
替换积分变量:
将原积分中的x替换为g(t),并将dx替换为g′(t) dt。
求解新积分:
求解新的积分
∫f(g(t))g′(t) dt
回代变量:
将t回代为
g^{−1}(x)
,得到最终的不定积分结果。
简单理解就是将变量替换x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。
第二类换元积分法
通常涉及三角函数替换或带根号形式的替换。
将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x
1.选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。
2.求导数: 求 x 对 t 的导数dx/dt=g'(t)并将其改写为 dx=g′(t) dt.
3.替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。
4.求解新积分: 求解新的积分
5.回代变量: 将 t 回代为g^{−1}(x),得到最终的不定积分结果。