高等数学Day6

函数与极限

1.函数

1.1定义

 函数f是从一个集合D(称为定义域,D包含于实数集R)到另一个集合Y(称为值域)的映射。对于定义域中的每一个元素x,函数f都指定了一个唯一的元素y在值域中,记作:                                                              

y=f(x),x∈X

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有xx 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数f(x)f(x)在定义域内所有可能的yy 值的集合。

确定定义域和值域的方法

定义域:

代数方法:通过分析函数的表达式,确定哪些xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。

图形方法:通过绘制函数的图形,观察x轴上的范围,确定定义域。

值域:

代数方法:通过分析函数的表达式,确定f(x)的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在−1和1之间。

图形方法:通过绘制函数的图形,观察y轴上的范围,确定值域。

常见函数类型

1.线性函数:
f(x)=ax+b    其中a和b是常数。

2.多项式函数:
f(x)=a{n}x^{n}+a{n−1}x^{n−1}+⋯+a{1}x+a{0}    其中ai是常数。

3.指数函数:
f(x)=a^{x}       其中a>0且a≠1。

4.对数函数:
f(x)=\log_{a}x     其中a>0且a≠1。

5.三角函数:如正弦函数f(x)=sin⁡(x),余弦函数f(x)=cos⁡(x),正切函数f(x)=tan⁡(x)等。

6.反三角函数:如反正弦函数f(x)=arcsin⁡(x),反余弦函数f(x)=arccos⁡(x),反正切函数f(x)=arctan⁡(x)等。

7.符号函数:

1.2函数的特性

有界性

上界

下界

有界:

一个函数f(x)在其定义域D上称为有界的,如果存在两个实数M和m,使得对于定义域中的任意x,都有:
                                                                                m≤f(x)≤M

其中:M称为函数的上界,m称为函数的下界。

函数与极限

1.函数

1.1 定义

  函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作:                                                                                  y=f(x),x∈X

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。

函数的两要素是指函数的定义域和值域。

定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。

值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。

确定定义域和值域的方法

定义域:

代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。

图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。

值域:

代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。

分类

根据函数的有界性,可以分为以下几种情况:

有界函数:如果函数f(x)在其定义域D上既有上界又有下界,则称f(x)是有界函数。

无界函数:如果函数f(x)在其定义域D上没有上界或没有下界,则称f(x)是无界函数

单调性

定义

一个函数f(x)在其定义域D上称为单调的,如果对于定义域中的任意x1和x2,当x1<x2时

单调递增:如果f(x1)≤f(x2),则函数f是单调递增的。

严格单调递增:如果f(x1)<f(x2),则函数f是严格单调递增的。

单调递减:如果f(x1)≥f(x2),则函数f是单调递减的。

严格单调递减:如果f(x1)>f(x2),则函数f是严格单调递减的。

单调递减函数:

函数f(x)=−x:在实数范围内,f(x)=−x是严格单调递减的,因为对于任意x1<x2,都有f(x1)>f(x2)。

函数
g(x)=x

在x>0的范围内,该函数是严格单调递减的,因为对于任意x1<x2,都有g(x1)>g(x2)。

3奇偶性

定义

一个函数f(x)在其定义域D上称为:

偶函数:如果对于定义域中的任意x,都有f(−x)=f(x),则函数f是偶函数。偶函数的图形关于y轴对称。

奇函数:如果对于定义域中的任意x,都有f(−x)=−f(x),则函数f是奇函数。奇函数的图形关于原点对称。

4周期性

定义

一个函数f(x)在其定义域D上称为周期函数,如果存在一个正数T,使得对于定义域中的任意x,都有:
f(x+T)=f(x)

其中T称为函数的周期。如果存在最小的正数T满足上述条件,则称T为函数的最小正周期。

3反函数

定义

给定一个函数f:X→Y,如果存在一个函数g:Y→X,使得对于X中的每一个x,都有g(f(x))=x,并且对于Y中的每一个y,都有f(g(y))=y,则称g为f的反函数,记作


f^{-1}

换句话说,反函数


f^{−1}

满足以下两个条件:

对于X中的每一个x,有
f^{−1}(f(x))=x

对于Y中的每一个y,有


f(f^{−1}(y))=y

注意:原函数和反函数是关于y=x对称的。

存在条件

一个函数f存在反函数的充分必要条件是f是双射(即一一对应)。具体来说:

一一对应:对于X中的任意两个不同的元素x1和x2,都有f(x1)≠f(x2)。

满射:对于Y中的每一个元素y,都存在X中的一个元素x,使得f(x)=y。

不存在反函数的函数:

函数f(x)=x2:在实数范围内,f(x)=x2不是双射,因为f(x)=f(−x),所以不存在反函数。

函数g(x)=sin⁡(x):在实数范围内,g(x)=sin⁡(x)不是双射,因为sin⁡(x)是周期函数,所以不存在反函数。

求解反函数

求函数的反函数通常涉及以下步骤。假设我们有一个函数f:X→Y,我们希望找到它的反函数


f^{−1}:Y→X

。以下是详细的求解过程:

步骤1:验证函数是否存在反函数

首先,需要验证函数f是否是双射(即一一对应)。只有当f是双射时,它才存在反函数。

步骤2:解方程y=f(x)

假设y=f(x),我们需要解这个方程来找到x的表达式。具体来说,我们需要将x表示为y的函数:x=g(y)。

步骤3:交换x和y

在得到x的表达式后,将x和y互换,得到反函数


x=f^{−1}(y)

步骤4:验证反函数

最后,验证反函数是否满足反函数的定义,即:

对于X中的每一个x,有


f^{−1}(f(x))=x

对于Y中的每一个y,有
f(f^{−1}(y))=y

极限

1数列极限

定义

一个数列{an}的极限是L,如果对于任意给定的正数ϵ,总存在一个正整数N,使得对于所有n>N,都有:
∣a_n−L∣<ϵ

换句话说,当n足够大时,数列的项an可以无限接近L。此时,我们称数列{an}收敛于L

如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。

极限的性质

唯一性:如果数列{an}收敛,则其极限是唯一的。

有界性:如果数列{an}收敛,则它是有界的。

保序性:如果数列{an}和{bn}都收敛,且对于所有n,都有an≤bn,则

四则运算:如果数列{an}和{bn}都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

极限的判定

直接法

通过分析数列的通项公式,直接计算其极限。

夹逼定理

如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且


2函数的极限

定义

设函数f(x)在点x=a的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数ϵ(无论它多么小),总存在正数δ,使得当0<∣x−a∣<δ时,有
∣f(x)−L∣<ϵ

则称L为函数f(x)当x趋近于a时的极限,记作

性质

唯一性:如果极限存在,那么它是唯一的。

局部有界性:如果

,则存在M>0,δ>0,使得f(x)在0<∣x−a∣<δ内有界,即


|f(x)|\leqM

局部保号性:如果

且L>0(或L<0),则存在δ>0,使得f(x)>0(或f(x)<0)在0<∣x−a∣<δ内成立。

极限的计算

代入法:如果f(x)在x=a处连续,则

​​​​​​​

极限运算法则:如果

​​​​​​​

夹逼定理:如果f(x)≤g(x)≤h(x)在x=a的某个去心邻域内成立,且

​​​​​​​

单侧极限

左极限:如果

,则称L为f(x)在x趋近于a时的左极限。

​​​​​​​

右极限:如果

则称L为f(x)在x趋近于a时的​​​​​​​右极限

存在,则左极限和右极限都存在且相等

3无穷大与无穷小

无穷大:如果对于任意大的正数M,总存在正数δ,使得当0<∣x−a∣<δ时,有∣f(x)∣>M,则称f(x)在x趋近于a时趋向于无穷大,

无穷大分为正无穷大和负无穷大。

无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

无穷大乘无穷大肯定为无穷大。

无穷小:如果

​​​​​​​

,则称f(x)在x趋近于a或趋近于∞时的无穷小。

运算法则:

1.无穷小加、减、乘无穷小都是无穷小

2.有界函数与无穷小的乘积也为无穷小

3.常数与无穷小的乘积也为无穷小

4.无穷小除以无穷小不确定。

注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

高阶无穷小

设α和β是两个无穷小量(即当x→a时,α→0且β→0)。

如果

,则称α是β的高阶无穷小,记作α=o(β)。即α的收敛速度比β快。

低阶无穷小

设α和β是两个无穷小量。

如果

,则称α是β的低阶无穷小。

同阶无穷小

设α和β是两个无穷小量。

如果

,则称α和β是同阶无穷小。​​​​​​​

等价无穷小

设α和β是两个无穷小量(即当x→a时,α→0且β→0)。

如果

,则称α和β等价无穷小,记作α∼β。

k阶无穷小

设α和β是两个无穷小量,且


β=o(x^{k})当x→0

如果

,则称α是β的k阶无穷小。

4无穷大极限

函数f(x)当x趋于无穷大时,如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当∣x∣>X时,∣f(x)−A∣<ϵ,则我们说f(x)当x趋于无穷大时的极限是A。

具体分类:

  1. 当x→+∞时的极限:

如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当x>X时,∣f(x)−A∣<ϵ,则我们说f(x)当x→+∞时的极限是A,记作

2.当x→−∞时的极限:

如果存在一个常数A,使得对于任意小的正数ϵ,总存在一个正数X,使得当x<−X时,∣f(x)−A∣<ϵ,则我们说f(x)当x→−∞时的极限是A,记作

5极限存在准则

1单调有界准则

如果函数f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。

洛必达法则

假设f(x)和g(x)是两个函数,并且在某个点a的某个去心邻域内可导(即f′(x)和g′(x)存在),并且g′(x)≠0在这个去心邻域内。如果:

​​​​​​​

如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。

2夹逼定理

如果f(x)≤g(x)≤h(x)在x=a的某个去心邻域内成立,且

函数的连续性

1连续性

在某点的连续性:

设函数f(x)在点x=a的某个邻域内有定义。如果

,则称函数f(x)在点x=a处连续。

左连续

设函数f(x)在点x=a的左侧有定义(即存在一个δ>0,使得(a−δ,a)内的所有x都有定义)。

如果

,则称函数f(x)在点x=a处左连续。

右连续

设函数f(x)在点x=a的右侧有定义(即存在一个δ>0,使得(a,a+δ)内的所有x都有定义)。

如果

,则称函数f(x)在点x=a处右连续。

连续的充要条件

函数连续的充要条件:函数左右连续。

在区间的连续性

如果函数f(x)在区间(a,b)内的每一点都连续,则称函数f(x)在区间(a,b)内连续。

如果函数f(x)在区间[a,b]内的每一点都连续,并且在左端点x=a处右连续,在右端点x=b处左连续,则称函数f(x)在区间[a,b]上连续。

局部性质

如果函数f(x)在点x=a处连续,则f(x)在x=a的某个邻域内有界。

全局性质

如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上有界。

如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上达到最大值和最小值。

如果函数f(x)在区间[a,b]上连续,并且f(a)和f(b)异号,则存在c∈(a,b)使得f(c)=0(零点定理,后边会讲)。

2不连续点

定义


\begin{cases}在a处函数极限不存在\\在a处函数无定义\\在a处极限不等于函数值\end{cases}

可去不连续点

如果


\lim_{x\rightarrowa}f(x)

存在且有限,但f(a)不存在或


f(a)≠\lim_{x\rightarrowa}f(x)

,则称x=a是f(x)的可去不连续点。

如:


y=\dfrac{x^{2}-1}{x-1}

在x-->1时,简化等式:


y=\dfrac{x^{2}-1}{x-1}=x+1


\lim_{x\rightarrow1}(x+1)=2=f(2)

但是在x=1处,y无意义,所以x=1是y的可去不连续点。

跳跃不连续点

如果


\lim_{x\rightarrowa^{-}}f(x)和\lim_{x\rightarrowa^{+}}f(x)

都存在且有极限,但


\lim_{x\rightarrowa^{-}}f(x)≠\lim_{x\rightarrowa^{+}}f(x)

,则称x=a是f(x)的跳跃不连续点。

函数
f(x)=\begin{cases}1&x\geq0\\0&x<0\end{cases

在x=0处,左极限
\lim_{x\rightarrow0^{-}}f(x)=0

,右极限
\lim_{x\rightarrow0^{+}}f(x)=1

,函数值f(0)=1。

因此,函数在x=0处是跳跃不连续点。

无穷不连续点

如果
\lim_{x\rightarrowa}f(x)

不存在或为无穷大,则称x=a是f(x)的无穷不连续点。

如:y=tanx,x在π/2处为无穷大,所以x=π/2是f(x)的无穷不连续点。

3闭区间连续函数性质

零点定理:(后边会用)

设函数f(x)在闭区间[a,b]上连续,并且f(a)和f(b)异号(即f(a)⋅f(b)<0),则存在c∈(a,b)使得f(c)=0。

介值定理:(后边会用)

设函数f(x)在闭区间[a,b]上连续,并且f(a)≠f(b)。对于任意介于f(a)和f(b)之间的数k(即min⁡(f(a),f(b))<k<max⁡(f(a),f(b))),存在c∈(a,b)使得f(c)=k。

零点定理与介值定理的关系

零点定理是介值定理的特例:

零点定理可以看作是介值定理在k=0时的特例。

如果f(a)和f(b)异号,则0介于f(a)和f(b)之间,因此存在c∈(a,b)使得f(c)=0。

导数

概念

速度角度:

在物理学中,速度是描述物体位置随时间变化快慢的量。假设我们有一个函数f(t1)表示物体在时间t1的位置,f(t2)表示物体在时间t2的位置,那么在t1到t2时间段内,物体移动的距离为f(t2)-f(t1),平均速度为:



物体在t1的瞬时速度接近于:



也就是说当t2无限接近于t1时的速度。

切线角度

假设我们有一个函数f(x),其图像是一条曲线。我们想要了解这条曲线在某一点x=a处的变化情况。

首先,考虑曲线上的两个点(a,f(a))和(b,f(b)),其中b是接近a的另一个点。连接这两个点的直线称为割线。割线的斜率可以表示为:



接下来,我们让点b逐渐接近点a,即b→a。在这个过程中,割线的斜率会逐渐接近曲线在点(a,f(a))处的切线的斜率。

当b无限接近a时,割线的斜率就变成了曲线在点(a,f(a))处的切线的斜率:

1导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作



其中:

-Δx是一个很小的增量,表示x的变化量。
 f(x_{0}+Δx)

 是x在x0点增加Δx后的函数值。

-f(x0)是x在x0点的函数值。

  是函数在x=x0处的平均变化率。

-
 \lim_{Δx\rightarrow0}

  表示当Δx趋近于0时的极限。

-平均变化率:在x=x0和x=x0+Δx之间,函数的平均变化率是
 

 
 。这个比值表示函数在这段区间内的平均变化速度。

-瞬时变化率:当Δx趋近于0时,平均变化率的极限值就是函数在x=x0处的瞬时变化率,即导数f′(x0)。

2单侧导数

1左导数

函数f(x)在点x=a处的左导数定义为:



其中h→0−表示h从负方向趋近于0。

2右导数

函数f(x)在点x=a处的右导数定义为:



其中h→0+表示h从正方向趋近于0。

3导数的存在性

函数f(x)在点x=a处的导数f′(a)存在,当且仅当左导数和右导数都存在且相等:

f'(a)=f_{−}'(a)=f_{+}'(a)

例子

*f*(*x*)=∣*x*∣,计算其在x=0处的左导数和右导数。

解:

左导数:



右导数:


由于 

f_{-}'(0)≠f_{+}'(0)

,所以f(x)=∣x∣在x=0处不可导。

导数的几何意义

1切线

由导数定义可知,f(x)在点(a,f(a))处的斜率:


所以切线方程可以表示为:



其中:

-y是切线上的点的纵坐标。
-f(a)是函数在点x=a处的值。
-f′(a)是函数在点x=a处的导数,即切线的斜率。
-x是切线上的点的横坐标。
-a是切点处的横坐标。

化简切线方程:

y-f(a)=f′(a)(x-a)=>y=f'(a)x-af'(a)+f(a)

将切线方程化简为标准形式y=mx+b,其中m是斜率,b是截距。

2法线

是与切线垂直的直线。切线的斜率为f'(a),则法线的斜率为



法线方程的一般形式是:

其中:

-y是法线上的点的纵坐标。
-f(a是函数在点x=a处的值。
-f′(a)是函数在点x=a处的导数,即切线的斜率。
-x是法线上的点的横坐标。
-a是法线点处的横坐标。

化简法线方程:
将法线方程化简为标准形式y=mx+b,其中m是斜率,b是截距。

可导与连续的关系

1定义

连续性

一个函数f(x)在点x=a处连续,如果满足以下条件:



这意味着当x接近a时,函数值f(x)也接近f(a)。换句话说,函数在点x=a处没有跳跃或断裂。

可导性

一个函数f(x)在点x=a处可导,如果它在该点处的导数存在,即:



这意味着函数在点x=a处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

2定理

可导性蕴含连续性

如果函数f(x)在点x=a处可导,那么它在点x=a处连续。

证明:如果函数f(x)在点x=a处可导,则



我们要证f(x)在点x=a处连续,需要证明



变换上述等式:



所以



连续性不一定蕴含可导性

可导性:

左导数:

f_{-}'(0)=\lim_{h\rightarrow0^{-}}\dfrac{f(h+0)-f(h)}{h}=\lim_{h\rightarrow0^{-}}\dfrac{-h-0}{h}=-1

右导数:

f_{+}'(0)=\lim_{h\rightarrow0^{+}}\dfrac{f(0+h)-f(h)}{h}=\lim_{h\rightarrow0^{+}}\dfrac{h-0}{h}=1

左右导数不相等,所以函数不是可导的。

求导公式

1求导规则

常数规则:
  

  

  其中c是常数。

幂函数规则:
  
  
  

  其中n是任意实数。

常数倍规则:
  

  

  其中c是常数。

和差规则:
  

乘积规则:
  

  

商规则:
  

  

  其中g(x)≠0。

链式法则(复合函数求导):
  
 
  

2常见函数的求导公式

指数函数:
  
 


  其中a>0且a≠1。

对数函数:
  


  其中a>0且a≠1。

三角函数:
  
 
  

反三角函数:
  

  

  


高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数f(x)的一阶导数是f′(x),那么二阶导数就是对一阶导数再求导,记作


。类似地,三阶导数是对二阶导数再求导,记作



,以此类推。

定义

对于一个函数f(x),其n阶导数定义为:



其中n是正整数。

隐函数求导

隐式方程是指函数关系不是显式地表示为y=f(x),而是表示为F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出 

dy/dx

隐函数求导的基本步骤

对方程两边求导:假设有一个隐式方程F(x,y)=0,我们对方程两边分别对x求导。
使用链式法则:在求导过程中,如果遇到y的函数,需要使用链式法则,将y视为x的函数。
通过求导得到的方程,解出dy/dx。

参数方程求导

参数方程是一种描述曲线的方法,其中曲线的x和y坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:

x=f(t)
y=g(t)

其中t是参数。我们希望求出曲线的导数dy/dx。

参数方程求导的基本步骤

求x对t的导数:
   

求y对t的导数:
  

求dy/dx:
 
 

微分

定义

微分是函数在某个变化过程中的改变量的线性主要部分。

若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量

△y=f(x+△x)-f(x)

可以表示为

△y=f'(x)·△x+o(△x)

,其中o(△x)是△x的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。因此,

微分dy可以近似地表示为

dy=f'(x)△x

,它描述了函数值y随自变量x变化而变化的线性部分。‌

可微的充要条件

函数f(x)在点x=a处可微的充要条件是:

函数在点x=a处连续:
  
  \lim_{⁡x\rightarrowa}f(x)=f(a)
  

函数在点x=a处左右导数存在且相等:
  
  f'_{-}(a)=f'_{+}(a)
  

简单来说,就是可微的充要条件是函数f(x)在点x=a处可导。

微分公式与法则

根据微分定义

dy=f'(x)dx

可知,求微分实际上就是求导数,所以微分公式同求导公式,详见导数章节,这里不再赘述。

2拉格朗日中值定理

如果函数f(x)满足以下条件:

在闭区间[a,b]上连续。
在开区间(a,b)上可导。

那么,在开区间(a,b)内至少存在一点c,使得:

f′(c)=(f(b)-f(a))/(b-a)

拉格朗日中值定理的几何意义是:在区间[a,b]上,函数f(x)的图像上至少存在一点c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

3柯西中值定理

如果函数f(x)和g(x)满足以下条件:

在闭区间[a,b]上连续。
在开区间(a,b)上可导。
在开区间(a,b)内,g′(x)≠0。

那么,在开区间(a,b)内至少存在一点c,使得:



柯西中值定理的几何意义是:在区间[a,b]上,函数f(x)和g(x)的图像上至少存在一点c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

4洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即0/0型)或分子和分母都趋向于无穷大(即∞/∞型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数f(x)和g(x满足以下条件:

在点a的某个去心邻域内可导,且g′(x)≠0。

 
存在(或为无穷大),那么:

函数的单调性

函数的单调性可以通过其导数来判定:

递增函数:
  如果函数f(x)在区间(a,b)上可导,并且对于区间(a,b)内的任意x,总有f′(x)≥0,则函数f(x)在区间(a,b)上是递增的。如果f′(x)>0,则函数f(x)在区间(a,b)上是严格递增的。
递减函数:
  如果函数f(x)在区间(a,b)上可导,并且对于区间(a,b)内的任意x,总有f′(x)≤0,则函数f(x)在区间(a,b)上是递减的。如果f′(x)<0,则函数f(x)在区间(a,b)上是严格递减的。

函数的凹凸性

1函数凹凸性判定

函数的凹凸性可以通过其二阶导数来判定:

凹函数:
  如果函数f(x)在区间(a,b)上二阶可导,并且对于区间(a,b)内的任意x,总有f′′(x)≥0,则函数f(x)在区间(a,b)上是凹的。
凸函数:
  如果函数f(x)在区间(a,b)上二阶可导,并且对于区间(a,b)内的任意x*x*,总有f′′(x)≤0,则函数f(x)在区间(a,b)上是凸的。

2拐点

拐点是函数图像从凹变凸或从凸变凹的点。对于函数f(x),如果f′′(x)=0且f′′(x)在x的两侧符号相反,则x是函数的拐点。

极值

极值

是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。

如果存在一个区间(a,b),使得对于所有x∈(a,b),总有f(x)≤f(c),则称f(c)是函数f(x)在点c处的局部极大值。

如果存在一个区间(a,b),使得对于所有x∈(a,b),总有f(x)≥f(c),则称f(c)是函数f(x)在点c处的局部极小值。

最值

最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

如果对于函数f(x)的整个定义域内的任意x,总有f(x)≤f(c),则称f(c)是函数f(x)的全局最大值。

如果对于函数f(x)的整个定义域内的任意x,总有f(x)≥f(c),则称f(c)是函数f(x)的全局最小值。

1极值的充分必要条件

必要条件

如果函数f(x)在点x=c处取得局部极大值或局部极小值,并且f(x)在x=c处可导,则f′(c)=0。换句话说,极值点必须是函数的驻点。

充分条件

一阶导数判定法

局部极大值:
  如果f′(c)=0,并且在c的左侧f′(x)>0,在c的右侧f′(x)<0,则x=c是局部极大值。
局部极小值:
  如果f′(c)=0,并且在c的左侧f′(x)<0,在c的右侧f′(x)>0,则x=c是局部极小值。

二阶导数判定法

局部极大值:
  如果f′(c)=0,并且f′′(c)<0,则x=c是局部极大值。
局部极小值:
  如果f′(c)=0,并且f′′(c)>0,则x=c是局部极小值。


不定积分

定义

如果函数F(x)满足F′(x)=f(x),则称F(x)是f(x)的一个原函数。不定积分

\intf(x) dx

表示f(x)的所有原函数,通常写成:



\intf(x) dx=F(x)+C

其中,C是积分常数,表示原函数的不确定性。f(x)是被积函数,dx表示对x的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

基本积分公式

常数积分:
  
  ∫k dx=kx+C(其中k是常数)
  

幂函数积分:
  
  ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中n≠−1)
  

指数函数积分:
  
  ∫e^{x} dx=e^{x}+C
  

  
  ∫a^{x} dx={a^{x}}/{ln⁡a}+C(其中a>0且a≠1)
  

  

对数函数积分:
  
  ∫1/xdx=ln⁡∣x∣+C
  

三角函数积分:
  
  ∫sin⁡x dx=−cos⁡x+C
  

  
  ∫cos⁡x dx=sin⁡x+C
  

反三角函数积分:
  

  

换元积分法

1第一类换元积分法

选择合适的变量替换:
  选择一个合适的变量替换u=g(x),使得积分变得更简单。

求导数:
  求u对x的导数 
  

  
  ,并将其改写为 
  
  du=g′(x) dx
  

替换积分变量:
  将原积分中的x替换为u,并将dx替换为 
  

  

求解新积分:
  求解新的积分 
  
  ∫f(u) du
 

回代变量:
  将u回代为g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

2第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

选择合适的变量替换:
  选择一个合适的变量替换x=g(t),使得积分变得更简单。

求导数:
  求x对t的导数 
  

  
  ,并将其改写为 
  
  dx=g′(t) dt
  

替换积分变量:
  将原积分中的x替换为g(t),并将dx替换为g′(t) dt。

求解新积分:
  求解新的积分
  
  ∫f(g(t))g′(t) dt
 

回代变量:
  将t回代为 
 
  g^{−1}(x)
  
  ,得到最终的不定积分结果。

简单理解就是将变量替换x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

好的,以下是使用 typedef 和文件操作设计的学生成绩管理系统。首先定义了一个结构体类型 `Student`,表示学生信息,其中包括学号、姓名、性别、出生日期、3门功课的成绩、总分和平均分。然后定义了一个函数 `addStudent`,用于添加一条或多条记录。该函数会从控制台读入学生信息,并将其写入文件 `student.txt` 中。 ```c #include <stdio.h> // 定义学生信息结构体类型 typedef struct { int num; // 学号 char name[20]; // 姓名 char sex[10]; // 性别 int year; // 出生年份 int month; // 出生月份 int day; // 出生日份 int score[3]; // 3门功课的成绩 int totalScore; // 总分 float avgScore; // 平均分 } Student; // 添加一条或多条学生信息记录 void addStudent() { FILE* fp = fopen("student.txt", "a"); // 打开文件,以追加方式写入数据 if (fp == NULL) { printf("打开文件失败!\n"); return; } int num, year, month, day, score[3]; char name[20], sex[10]; while (1) { // 读入学生信息 printf("请输入学生信息(学号 姓名 性别 出生年月日 高数成绩 C语言成绩 大学物理成绩):\n"); scanf("%d%s%s%d%d%d%d%d%d", &num, name, sex, &year, &month, &day, &score[0], &score[1], &score[2]); // 计算总分和平均分 int totalScore = 0; for (int i = 0; i < 3; i++) { totalScore += score[i]; } float avgScore = (float)totalScore / 3; // 将学生信息写入文件 fprintf(fp, "%d %s %s %d %d %d %d %d %d %d %f\n", num, name, sex, year, month, day, score[0], score[1], score[2], totalScore, avgScore); // 询问是否继续添加 printf("是否继续添加(输入1继续,其他键退出):"); int choice; scanf("%d", &choice); if (choice != 1) { break; } } fclose(fp); // 关闭文件 printf("学生信息添加成功!\n"); } int main() { addStudent(); return 0; } ``` 注意,以上代码只实现了添加记录的功能。如果需要实现其他操作,例如查询、修改、删除记录等,需要再进行相应的编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值