力扣题
1、题目地址
2、模拟表
表:Stadium
Column Name | Type |
---|---|
id | int |
visit_date | date |
people | int |
- visit_date 是该表中具有唯一值的列。
- 每日人流量信息被记录在这三列信息中:序号 (id)、日期 (visit_date)、 人流量 (people)
- 每天只有一行记录,日期随着 id 的增加而增加
3、要求
- 编写解决方案找出每行的人数大于或等于 100 且 id 连续的三行或更多行记录。
- 返回按 visit_date 升序排列 的结果表。
4、示例
输入:
Stadium 表:
id | visit_date | people |
---|---|---|
1 | 2017-01-01 | 10 |
2 | 2017-01-02 | 109 |
3 | 2017-01-03 | 150 |
4 | 2017-01-04 | 99 |
5 | 2017-01-05 | 145 |
6 | 2017-01-06 | 1455 |
7 | 2017-01-07 | 199 |
8 | 2017-01-09 | 188 |
输出:
id | visit_date | people |
---|---|---|
5 | 2017-01-05 | 145 |
6 | 2017-01-06 | 1455 |
7 | 2017-01-07 | 199 |
8 | 2017-01-09 | 188 |
解释:
id 为 5、6、7、8 的四行 id 连续,并且每行都有 >= 100 的人数记录。
请注意,即使第 7 行和第 8 行的 visit_date 不是连续的,输出也应当包含第 8 行,因为我们只需要考虑 id 连续的记录。
不输出 id 为 2 和 3 的行,因为至少需要三条 id 连续的记录。
5、代码编写
1、我的写法
WITH one AS(
SELECT *, ROW_NUMBER() OVER(ORDER BY id) AS r, id - ROW_NUMBER() OVER(ORDER BY id) AS rk
FROM Stadium
WHERE people >= 100
)
SELECT id, visit_date, people
FROM one
WHERE rk IN (
SELECT rk
FROM one
GROUP BY rk
HAVING COUNT(rk) >= 3
)
| id | visit_date | people |
| -- | ---------- | ------ |
| 5 | 2017-01-05 | 145 |
| 6 | 2017-01-06 | 1455 |
| 7 | 2017-01-07 | 199 |
| 8 | 2017-01-09 | 188 |
2、解析
SELECT *, ROW_NUMBER() OVER(ORDER BY id) AS r, id - ROW_NUMBER() OVER(ORDER BY id) AS rk
FROM Stadium
WHERE people >= 100
| id | visit_date | people | r | rk |
| -- | ---------- | ------ | - | -- |
| 2 | 2017-01-02 | 109 | 1 | 1 |
| 3 | 2017-01-03 | 150 | 2 | 1 |
| 5 | 2017-01-05 | 145 | 3 | 2 |
| 6 | 2017-01-06 | 1455 | 4 | 2 |
| 7 | 2017-01-07 | 199 | 5 | 2 |
| 8 | 2017-01-09 | 188 | 6 | 2 |
会发现一个点,自增ID 减去 row_number 的值一样
是 连续
的,我们只需要查找 同一个 rk 值出现大于等于 3 次
就满足条件
5、知识点
1、WITH AS
作用
1、在 SQL 查询中,经常会遇到需要 重复使用的子查询
。
2、为了 简化查询语句
并 提高可读性
,SQL 引入了 WITH AS 语法。
3、通过使用 WITH AS,我们可以创建临时表或视图,将子查询的结果保存起来,并在主查询中使用。
作用解析
1、简化复杂查询:当查询逻辑较为复杂或包含多个嵌套的子查询时,使用 WITH AS 可以将子查询逻辑分解成可读性更高的部分。这样可以降低查询的复杂度,并且更容易理解和维护。
示例1:假设有一个名为"orders"的表,存储了订单信息,包括订单号、客户ID和订单金额。我们想要查询每个客户的订单总金额,同时筛选出总金额大于1000的客户。使用 WITH AS 可以简化查询逻辑:
WITH customer_orders (customer_id, total_amount) AS (
SELECT customer_id, SUM(order_amount) AS total_amount
FROM orders
GROUP BY customer_id
)
SELECT customer_id, total_amount
FROM customer_orders
WHERE total_amount > 1000;
上述示例中,我们创建了名为"customer_orders"的临时表,存储了每个客户的订单总金额。在主查询中,我们可以直接引用"customer_orders"表,并进行筛选操作,使查询逻辑更加清晰。
2、提高查询性能:使用 WITH AS 可以避免在主查询中重复执行相同的子查询,从而提高查询性能。临时表的结果会被缓存,主查询只需要引用临时表即可,避免了重复计算子查询的开销。
示例2:假设我们需要查询员工表中工资高于平均工资的员工信息,并按工资降序排序。使用 WITH AS 可以避免重复计算平均工资:
WITH average_salary AS (
SELECT AVG(salary) AS avg_salary
FROM employees
)
SELECT employee_id, first_name, last_name, salary
FROM employees
WHERE salary > (SELECT avg_salary FROM average_salary)
ORDER BY salary DESC;
上述示例中,我们通过创建名为"average_salary"的临时表,保存了员工表中的平均工资。在主查询中,我们直接引用临时表中的平均工资,避免了重复计算的开销,提高了查询性能。
2、ROW_NUMBER 函数
专用窗口函数,按行数进行排序,具体用法可以看参考里面第二个链接和第三个链接
3、参考
SQL 中的 WITH AS 用法:简化查询,提高可读性
MySQL 窗口函数(Rows & Range)—— 滑动窗口函数用法
窗口函数 OVER(PARTITION BY) 详细用法 —— 语法 + 函数 + 开窗范围 ROWS 和 RANGE