JUC-共享模型之无锁
一、CAS
原理
无锁编程:Lock Free
CAS 的全称是 Compare-And-Swap
,是 CPU 并发原语
底层原理:CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核和多核 CPU 下都能够保证比较交换的原子性。
特点
CAS 特点:
- CAS 体现的是
无锁并发
、无阻塞并发
,线程不会陷入阻塞,线程不需要频繁切换状态(上下文切换,系统调用) - CAS 是基于
乐观锁
的思想
CAS 缺点:
- 循环时间长,开销大,因为执行的是循环操作,如果比较不成功一直在循环,最差的情况某个线程一直取到的值和预期值都不一样,就会无限循环导致
饥饿
,使用 CAS 线程数不要超过 CPU的 核心数 - 只能保证
一个共享变量
的原子操作- 对于一个共享变量执行操作时,可以通过循环 CAS 的方式来保证原子操作
- 对于多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候只能用锁来保证原子性
- 引出来 ABA 问题 (如果另一个线程修改V值假设原来是A,先修改成B,再修改回成A。当前线程的CAS操作无法分辨当前V值是否发生过变化。)
CAS 与 synchronized 总结:
synchronized
是从悲观的角度出发:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程),因此 synchronized 也称之为悲观锁,ReentrantLock 也是一种悲观锁,性能较差CAS
是从乐观的角度出发:总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据。如果别人修改过,则获取现在最新的值,如果别人没修改过,直接修改共享数据的值,CAS 这种机制也称之为乐观锁,综合性能较好
二、问题提出
有如下需求,保证account.withdraw
取款方法的线程安全,通过非阻塞式的乐观锁
来实现并发控制
下面使用synchronized
保证线程安全
/**
* Description: 使用重量级锁synchronized来保证多线程访问共享资源发生的安全问题
*/
@Slf4j(topic = "guizy.Test1")
public class Test1 {
public static void main(String[] args) {
Account.demo(new AccountUnsafe(10000));
}
}
class AccountUnsafe implements Account {
private Integer balance;
public AccountUnsafe(Integer balance) {
this.balance = balance;
}
@Override
public Integer getBalance() {
synchronized (this) {
return balance;
}
}
@Override
public void withdraw(Integer amount) {
// 通过这里加锁就可以实现线程安全,不加就会导致线程安全问题
synchronized (this) {
balance -= amount;
}
}
}
interface Account {
// 获取余额
Integer getBalance();
// 取款
void withdraw(Integer amount);
/**
* Java8之后接口新特性, 可以添加默认方法
* 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
* 如果初始余额为 10000 那么正确的结果应当是 0
*/
static void demo(Account account) {
List<Thread> ts = new ArrayList<>();
long start = System.nanoTime();
for (int i = 0; i < 1000; i++) {
ts.add(new Thread(() -> {
account.withdraw(10);
}));
}
ts.forEach(thread -> thread.start());
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
long end = System.nanoTime();
System.out.println(account.getBalance()
+ " cost: " + (end - start) / 1000_000 + " ms");
}
}
解决思路-无锁
上面的代码中使用synchronized
加锁操作来保证线程安全,但是 synchronized加锁操作太耗费资源 (因为底层使用了操作系统mutex指令, 造成内核态和用户态的切换),这里我们使用 无锁
来解决此问题
class AccountCas implements Account {
//使用原子整数: 底层使用CAS+重试的机制
private AtomicInteger balance;
public AccountCas(int balance) {
this.balance = new AtomicInteger(balance);
}
@Override
public Integer getBalance() {
//得到原子整数的值
return balance.get();
}
@Override
public void withdraw(Integer amount) {
while(true) {
//获得修改前的值
int prev = balance.get();
//获得修改后的值
int next = prev - amount;
//比较并设置值
/*
此时的prev为共享变量的值, 如果prev被别的线程改了.也就是说: 自己读到的共享变量的值 和 共享变量最新值 不匹配,
就继续where(true),如果匹配上了, 将next值设置给共享变量.
AtomicInteger中value属性, 被volatile修饰, 就是为了确保线程之间共享变量的可见性.
*/
if(balance.compareAndSet(prev, next)) {
break;
}
}
}
}
三、CAS 与 volatile (重点)
使用原子操作
来保证线程访问共享资源的安全性,cas+重试
的机制来确保(乐观锁思想), 相对于悲观锁思想的synchronized
,reentrantLock
来说,cas的方式效率会更好。
3.1 cas + 重试 的原理
前面看到的AtomicInteger
的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?
@Override
public void withdraw(Integer amount) {
// 核心代码
// 需要不断尝试,直到成功为止
while (true){
// 比如拿到了旧值 1000
int prev = balance.get();
// 在这个基础上 1000-10 = 990
int next = prev - amount;
/*
compareAndSet 保证操作共享变量安全性的操作:
① 线程A首先获取balance.get(),拿到当前的balance值prev
② 根据这个prev值 - amount值 = 修改后的值next
③ 调用compareAndSet方法, 首先会判断当初拿到的prev值,是否和现在的
balance值相同;
3.1、如果相同,表示其他线程没有修改balance的值, 此时就可以将next值
设置给balance属性
3.2、如果不相同,表示其他线程也修改了balance值, 此时就设置next值失败,
然后一直重试, 重新获取balance.get()的值,计算出next值,
并判断本次的prev和balnce的值是否相同...重复上面操作
*/
if (atomicInteger.compareAndSet(prev,next)){
break;
}
}
}
其中的关键是compareAndSet
(比较并设置值),它的简称就是 CAS
(也有 Compare And Swap
的说法),它必须是原子操作
。
流程 :
- 当一个线程要去修改
Account对象
中的值时,先获取值prev(调用get方法)
,然后再将其设置为新的值next(调用cas方法)
。在调用cas方法时,会将prev
与Account中的余额
进行比较。- 如果两者相等,就说明该值还未被其他线程修改,此时便可以进行修改操作。
- 如果两者不相等,就不设置值,重新获取值prev(调用get方法),然后再将其设置为新的值next(调用cas方法),直到修改成功为止。
3.2 volatile的作用
- 在上面代码中的
AtomicInteger类
,保存值的value属性使用了volatile
修饰。获取共享变量时,为了保证该变量的可见性
,需要使用 volatile 修饰。 - volatile可以用来修饰 成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
注意: volatile 仅仅保证了共享变量的
可见性
,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性
)
CAS
必须借助 volatile
才能读取到共享变量的最新值来实现【比较并交换】的效果
3.3 为什么CAS+重试(无锁)效率高
-
使用
CAS+重试
—无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而synchronized
会让线程在没有获得锁的时候,发生上下文切换
,进入阻塞。 -
但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。
四、Atomic
4.1 常用API
常见原子类:AtomicInteger、AtomicBoolean、AtomicLong
构造方法:
public AtomicInteger()
:初始化一个默认值为 0 的原子型 Integerpublic AtomicInteger(int initialValue)
:初始化一个指定值的原子型 Integer
常用API:
方法 | 作用 |
---|---|
public final int get() | 获取 AtomicInteger 的值 |
public final int getAndIncrement() | 以原子方式将当前值加 1,返回的是自增前的值 i++ |
public final int incrementAndGet() | 以原子方式将当前值加 1,返回的是自增后的值 ++i |
public final int getAndSet(int value) | 以原子方式设置为 newValue 的值,返回旧值 |
public final int addAndGet(int data) | 以原子方式将输入的数值与实例中的值相加并返回 实例:AtomicInteger 里的 value |
4.2 原理分析
AtomicInteger 原理:自旋锁 + CAS 算法
CAS 算法:有 3 个操作数(内存值 V, 旧的预期值 A,要修改的值 B)
- 当旧的预期值 A == 内存值 V 此时可以修改,将 V 改为 B
- 当旧的预期值 A != 内存值 V 此时不能修改,并重新获取现在的最新值,重新获取的动作就是自旋
分析 getAndSet 方法:
-
AtomicInteger:
public final int getAndSet(int newValue) { /** * this: 当前对象 * valueOffset: 内存偏移量,内存地址 */ return unsafe.getAndSetInt(this, valueOffset, newValue); }
valueOffset:偏移量表示该变量值相对于当前对象地址的偏移,Unsafe 就是根据内存偏移地址获取数据
valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); //调用本地方法 --> public native long objectFieldOffset(Field var1);
-
unsafe类:
// val1: AtomicInteger对象本身,var2: 该对象值得引用地址,var4: 需要变动的数 public final int getAndSetInt(Object var1, long var2, int var4) { int var5; do { // var5: 用 var1 和 var2 找到的内存中的真实值 var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var4)); return var5; }
var5:从主内存中拷贝到工作内存中的值(每次都要从主内存拿到最新的值到本地内存),然后执行
compareAndSwapInt()
再和主内存的值进行比较,假设方法返回 false,那么就一直执行 while 方法,直到期望的值和真实值一样,修改数据 -
变量 value 用 volatile 修饰,保证了多线程之间的内存可见性,避免线程从工作缓存中获取失效的变量
private volatile int value
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现比较并交换的效果
分析 getAndUpdate 方法:
-
getAndUpdate:
public final int getAndUpdate(IntUnaryOperator updateFunction) { int prev, next; do { prev = get(); //当前值,cas的期望值 next = updateFunction.applyAsInt(prev);//期望值更新到该值 } while (!compareAndSet(prev, next));//自旋 return prev; }
函数式接口:可以自定义操作逻辑
AtomicInteger a = new AtomicInteger(); a.getAndUpdate(i -> i + 10);
-
compareAndSet:
public final boolean compareAndSet(int expect, int update) { /** * this: 当前对象 * valueOffset: 内存偏移量,内存地址 * expect: 期望的值 * update: 更新的值 */ return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }
4.3 原子引用
原子引用:对 Object 进行原子操作,提供一种读和写都是原子性的对象引用变量
为了保证引用类型的共享变量是
线程安全
的(确保这个原子引用没有引用过别人)
原子引用类:AtomicReference
、AtomicStampedReference
(原子更新带有版本号
的引用类型,可以解决ABA问题)、AtomicMarkableReference
(原子更新带有标记
的引用类型)
AtomicStampedReference
和AtomicMarkableReference
两者的区别
AtomicStampedReference
需要我们传入整型变量
作为版本号,来判定是否被更改过AtomicMarkableReference
需要我们传入布尔变量
作为标记,来判断是否被更改过
AtomicReference 类:
- 构造方法:
AtomicReference<T> atomicReference = new AtomicReference<T>()
- 常用 API:
public final boolean compareAndSet(V expectedValue, V newValue)
:CAS 操作public final void set(V newValue)
:将值设置为 newValuepublic final V get()
:返回当前值
public class AtomicReferenceDemo {
public static void main(String[] args) {
Student s1 = new Student(33, "z3");
// 创建原子引用包装类
AtomicReference<Student> atomicReference = new AtomicReference<>();
// 设置主内存共享变量为s1
atomicReference.set(s1);
// 比较并交换,如果现在主物理内存的值为 z3,那么交换成 l4
while (true) {
Student s2 = new Student(44, "l4");
if (atomicReference.compareAndSet(s1, s2)) {
break;
}
}
System.out.println(atomicReference.get());
}
}
class Student {
private int id;
private String name;
//。。。。
}
4.4 原子数组
原子数组类:AtomicIntegerArray
、AtomicLongArray
、AtomicReferenceArray
AtomicIntegerArray 类方法:
/**
* i the index
* expect the expected value
* update the new value
*/
public final boolean compareAndSet(int i, int expect, int update) {
return compareAndSetRaw(checkedByteOffset(i), expect, update);
}
4.5 原子更新器
保证多线程访问同一个对象的成员变量
时,成员变量的线程安全性。
原子更新器类:AtomicReferenceFieldUpdater
、AtomicIntegerFieldUpdater
、AtomicLongFieldUpdater
利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合volatile
修饰的字段使用,否则会出现异常 IllegalArgumentException: Must be volatile type
常用 API:
static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> c, String fieldName)
:构造方法abstract boolean compareAndSet(T obj, int expect, int update)
:CAS
public class UpdateDemo {
private volatile int field;
public static void main(String[] args) {
AtomicIntegerFieldUpdater fieldUpdater = AtomicIntegerFieldUpdater
.newUpdater(UpdateDemo.class, "field");
UpdateDemo updateDemo = new UpdateDemo();
fieldUpdater.compareAndSet(updateDemo, 0, 10);
System.out.println(updateDemo.field);//10
}
}
4.6 原子累加器 (重要)
原子累加器类:LongAdder
、DoubleAdder
、LongAccumulator
、DoubleAccumulator
LongAdder 和 LongAccumulator 区别:
相同点:
- LongAddr 与 LongAccumulator 类都是使用
非阻塞算法 CAS
实现的, - LongAddr 类是 LongAccumulator 类的一个特例,只是 LongAccumulator 提供了更强大的功能,可以自定义累加规则,当
accumulatorFunction
为null
时就等价于 LongAddr。
不同点:
- 调用 casBase 时,LongAccumulator 使用
function.applyAsLong(b = base, x)
来计算,LongAddr 使用casBase(b = base, b + x)
- LongAccumulator 类功能更加强大,构造方法参数中
accumulatorFunction
是一个双目运算器接口,可以指定累加规则,比如累加或者相乘,其根据输入的两个参数返回一个计算值,LongAdder 内置累加规则identity
则是 LongAccumulator 累加器的初始值,LongAccumulator 可以为累加器提供非0的初始值,而 LongAdder 只能提供默认的 0
LongAddr 性能比 AtomicLong 好
LongAddr
性能提升的原因很简单,就是在有竞争时,设置多个累加单元(但不会超过cpu的核心数),Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。- 之前
AtomicLong
等都是在一个共享资源变量上进行竞争,while(true)
循环进行CAS重试,性能没有LongAdder高
五、Addr
优化机制
LongAdder
是 Java8 提供的类,跟 AtomicLong 有相同的效果,但对 CAS 机制进行了优化,尝试使用分段 CAS
以及自动分段迁移
的方式来大幅度提升多线程高并发执行 CAS 操作的性能
CAS 底层实现是在一个循环中不断地尝试修改目标值,直到修改成功。如果竞争不激烈修改成功率很高,否则失败率很高,失败后这些重复的原子性操作会耗费性能(导致大量线程空循环,自旋转)
优化核心思想:数据分离,将 AtomicLong 的单点的更新压力分担到各个节点,空间换时间,在低并发的时候直接更新,可以保障和 AtomicLong 的性能基本一致,而在高并发的时候通过分段减少竞争,提高了性能
分段 CAS 机制:
- 在发生竞争时,创建 Cell 数组用于将不同线程的操作离散(通过 hash 等算法映射)到不同的节点上
- 设置多个累加单元(会根据需要扩容,最大为 CPU 核数),Therad-0 累加 Cell[0],而 Thread-1 累加 Cell[1] 等,最后将结果汇总
- 在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能
自动分段迁移机制:某个 Cell 的 value 执行 CAS 失败,就会自动寻找另一个 Cell 分段内的 value 值进行 CAS 操作
伪共享
Cell 为累加单元:数组访问索引是通过 Thread 里的 threadLocalRandomProbe 域取模实现的,这个域是 ThreadLocalRandom 更新的
// Striped64.Cell
@sun.misc.Contended static final class Cell {
volatile long value;
Cell(long x) { value = x; }
// 用 cas 方式进行累加, prev 表示旧值, next 表示新值
final boolean cas(long prev, long next) {
return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);
}
// 省略不重要代码
}
Cell 是数组形式,在内存中是连续存储的,64 位系统中,一个 Cell 为 24 字节(16 字节的对象头和 8 字节的 value),每一个 cache line 为 64 字节,因此缓存行可以存下 2 个的 Cell 对象,当 Core-0 要修改 Cell[0]、Core-1 要修改 Cell[1],无论谁修改成功都会导致当前缓存行失效,从而导致对方的数据失效,需要重新去主存获取,影响效率
@sun.misc.Contended:防止缓存行伪共享,在使用此注解的对象或字段的前后各增加 128 字节大小的 padding,使用 2 倍于大多数硬件缓存行让 CPU 将对象预读至缓存时占用不同的缓存行,这样就不会造成对方缓存行的失效
源码解析
Striped64 类成员属性:
// 表示当前计算机CPU数量
static final int NCPU = Runtime.getRuntime().availableProcessors()
// 累加单元数组, 懒惰初始化
transient volatile Cell[] cells;
// 基础值, 如果没有竞争, 则用 cas 累加这个域,当 cells 扩容时,也会将数据写到 base 中
transient volatile long base;
// 在 cells 初始化或扩容时只能有一个线程执行, 通过 CAS 更新 cellsBusy 置为 1 来实现一个锁
transient volatile int cellsBusy;
工作流程:
- cells 占用内存是相对比较大的,是惰性加载的,在无竞争或者其他线程正在初始化 cells 数组的情况下,直接更新 base 域
- 在第一次发生竞争时(casBase 失败)会创建一个大小为 2 的 cells 数组,将当前累加的值包装为 Cell 对象,放入映射的槽位上
- 分段累加的过程中,如果当前线程对应的 cells 槽位为空,就会新建 Cell 填充,如果出现竞争,就会重新计算线程对应的槽位,继续自旋尝试修改
- 分段迁移后还出现竞争就会扩容 cells 数组长度为原来的两倍,然后 rehash,数组长度总是 2 的 n 次幂,默认最大为 CPU 核数,但是可以超过,如果核数是 6 核,数组最长是 8
方法分析:
-
LongAdder#add:累加方法
public void add(long x) { // as 为累加单元数组的引用,b 为基础值,v 表示期望值 // m 表示 cells 数组的长度 - 1,a 表示当前线程命中的 cell 单元格 Cell[] as; long b, v; int m; Cell a; // cells 不为空说明 cells 已经被初始化,线程发生了竞争,去更新对应的 cell 槽位 // 进入 || 后的逻辑去更新 base 域,更新失败表示发生竞争进入条件 if ((as = cells) != null || !casBase(b = base, b + x)) { // uncontended 为 true 表示 cell 没有竞争 boolean uncontended = true; // 条件一: true 说明 cells 未初始化,多线程写 base 发生竞争需要进行初始化 cells 数组 // fasle 说明 cells 已经初始化,进行下一个条件寻找自己的 cell 去累加 // 条件二: getProbe() 获取 hash 值,& m 的逻辑和 HashMap 的逻辑相同,保证散列的均匀性 // true 说明当前线程对应下标的 cell 为空,需要创建 cell // false 说明当前线程对应的 cell 不为空,进行下一个条件【将 x 值累加到对应的 cell 中】 // 条件三: 有取反符号,false 说明 cas 成功,直接返回,true 说明失败,当前线程对应的 cell 有竞争 if (as == null || (m = as.length - 1) < 0 || (a = as[getProbe() & m]) == null || !(uncontended = a.cas(v = a.value, v + x))) longAccumulate(x, null, uncontended); // 【uncontended 在对应的 cell 上累加失败的时候才为 false,其余情况均为 true】 } }
-
Striped64#longAccumulate:cell 数组创建
// x null false | true final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) { int h; // 当前线程还没有对应的 cell, 需要随机生成一个 hash 值用来将当前线程绑定到 cell if ((h = getProbe()) == 0) { // 初始化 probe,获取 hash 值 ThreadLocalRandom.current(); h = getProbe(); // 默认情况下 当前线程肯定是写入到了 cells[0] 位置,不把它当做一次真正的竞争 wasUncontended = true; } // 表示【扩容意向】,false 一定不会扩容,true 可能会扩容 boolean collide = false; //自旋 for (;;) { // as 表示cells引用,a 表示当前线程命中的 cell,n 表示 cells 数组长度,v 表示 期望值 Cell[] as; Cell a; int n; long v; // 【CASE1】: 表示 cells 已经初始化了,当前线程应该将数据写入到对应的 cell 中 if ((as = cells) != null && (n = as.length) > 0) { // CASE1.1: true 表示当前线程对应的索引下标的 Cell 为 null,需要创建 new Cell if ((a = as[(n - 1) & h]) == null) { // 判断 cellsBusy 是否被锁 if (cellsBusy == 0) { // 创建 cell, 初始累加值为 x Cell r = new Cell(x); // 加锁 if (cellsBusy == 0 && casCellsBusy()) { // 创建成功标记,进入【创建 cell 逻辑】 boolean created = false; try { Cell[] rs; int m, j; // 把当前 cells 数组赋值给 rs,并且不为 null if ((rs = cells) != null && (m = rs.length) > 0 && // 再次判断防止其它线程初始化过该位置,当前线程再次初始化该位置会造成数据丢失 // 因为这里是线程安全的判断,进行的逻辑不会被其他线程影响 rs[j = (m - 1) & h] == null) { // 把新创建的 cell 填充至当前位置 rs[j] = r; created = true; // 表示创建完成 } } finally { cellsBusy = 0; // 解锁 } if (created) // true 表示创建完成,可以推出循环了 break; continue; } } collide = false; } // CASE1.2: 条件成立说明线程对应的 cell 有竞争, 改变线程对应的 cell 来重试 cas else if (!wasUncontended) wasUncontended = true; // CASE 1.3: 当前线程 rehash 过,如果新命中的 cell 不为空,就尝试累加,false 说明新命中也有竞争 else if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break; // CASE 1.4: cells 长度已经超过了最大长度 CPU 内核的数量或者已经扩容 else if (n >= NCPU || cells != as) collide = false; // 扩容意向改为false,【表示不能扩容了】 // CASE 1.5: 更改扩容意向,如果 n >= NCPU,这里就永远不会执行到,case1.4 永远先于 1.5 执行 else if (!collide) collide = true; // CASE 1.6: 【扩容逻辑】,进行加锁 else if (cellsBusy == 0 && casCellsBusy()) { try { // 线程安全的检查,防止期间被其他线程扩容了 if (cells == as) { // 扩容为以前的 2 倍 Cell[] rs = new Cell[n << 1]; // 遍历移动值 for (int i = 0; i < n; ++i) rs[i] = as[i]; // 把扩容后的引用给 cells cells = rs; } } finally { cellsBusy = 0; // 解锁 } collide = false; // 扩容意向改为 false,表示不扩容了 continue; } // 重置当前线程 Hash 值,这就是【分段迁移机制】 h = advanceProbe(h); } // 【CASE2】: 运行到这说明 cells 还未初始化,as 为null // 判断是否没有加锁,没有加锁就用 CAS 加锁 // 条件二判断是否其它线程在当前线程给 as 赋值之后修改了 cells,这里不是线程安全的判断 else if (cellsBusy == 0 && cells == as && casCellsBusy()) { // 初始化标志,开始 【初始化 cells 数组】 boolean init = false; try { // 再次判断 cells == as 防止其它线程已经提前初始化了,当前线程再次初始化导致丢失数据 // 因为这里是【线程安全的,重新检查,经典 DCL】 if (cells == as) { Cell[] rs = new Cell[2]; // 初始化数组大小为2 rs[h & 1] = new Cell(x); // 填充线程对应的cell cells = rs; init = true; // 初始化成功,标记置为 true } } finally { cellsBusy = 0; // 解锁啊 } if (init) break; // 初始化成功直接跳出自旋 } // 【CASE3】: 运行到这说明其他线程在初始化 cells,当前线程将值累加到 base,累加成功直接结束自旋 else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) break; } }
-
sum:获取最终结果通过 sum 整合,保证最终一致性,不保证强一致性
public long sum() { Cell[] as = cells; Cell a; long sum = base; if (as != null) { // 遍历 累加 for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
累加流程图
六、ABA(重点)
ABA 问题:当进行获取主内存值时,该内存值在写入主内存时已经被修改了 N 次,但是最终又改成原来的值
其他线程先把 A 改成 B 又改回 A,主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,这时 CAS 虽然成功,但是过程存在问题
6.1 AtomicStampedReference (加版本号解决ABA问题)
- 构造方法:
public AtomicStampedReference(V initialRef, int initialStamp)
:初始值和初始版本号
- 常用API:
public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp)
:期望引用和期望版本号都一致才进行 CAS 修改数据public void set(V newReference, int newStamp)
:设置值和版本号public V getReference()
:返回引用的值public int getStamp()
:返回当前版本号
public static void main(String[] args) {
AtomicStampedReference<Integer> atomicReference = new AtomicStampedReference<>(100,1);
int startStamp = atomicReference.getStamp();
new Thread(() ->{
int stamp = atomicReference.getStamp();
atomicReference.compareAndSet(100, 101, stamp, stamp + 1);
stamp = atomicReference.getStamp();
atomicReference.compareAndSet(101, 100, stamp, stamp + 1);
},"t1").start();
new Thread(() ->{
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (!atomicReference.compareAndSet(100, 200, startStamp, startStamp + 1)) {
System.out.println(atomicReference.getReference());//100
System.out.println(Thread.currentThread().getName() + "线程修改失败");
}
},"t2").start();
}
6.2 AtomicMarkableReference (标记cas的共享变量是否被修改过)
AtomicStampedReference
可以给原子引用加上版本号,追踪原子引用整个的变化过程,如:A -> B -> A ->C,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。- 但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了
AtomicMarkableReference
public class Test1 {
static AtomicMarkableReference<String> ref = new AtomicMarkableReference<>("A", true);
public static void main(String[] args) {
new Thread(() -> {
String pre = ref.getReference();
System.out.println("change");
try {
other();
} catch (InterruptedException e) {
e.printStackTrace();
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("change A->C mark " + ref.compareAndSet(pre, "C", true, false));
}).start();
}
static void other() throws InterruptedException {
new Thread(() -> {
System.out.println("change A->A mark " + ref.compareAndSet(ref.getReference(), "A", true, false));
}).start();
}
}
七、Unsafe
- Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过
反射
获得 - 可以发现
AtomicInteger
以及其他的原子类,底层都使用的是Unsafe类
模拟实现原子整数:
public static void main(String[] args) {
MyAtomicInteger atomicInteger = new MyAtomicInteger(10);
if (atomicInteger.compareAndSwap(20)) {
System.out.println(atomicInteger.getValue());
}
}
class MyAtomicInteger {
private static final Unsafe UNSAFE;
private static final long VALUE_OFFSET;
private volatile int value;
static {
try {
// 需要反射获取
Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafe.setAccessible(true);
UNSAFE = (Unsafe) theUnsafe.get(null);
// 获取 value 属性的内存地址,value 属性指向该地址,直接设置该地址的值可以修改 value 的值
VALUE_OFFSET = UNSAFE.objectFieldOffset(
MyAtomicInteger.class.getDeclaredField("value"));
} catch (NoSuchFieldException | IllegalAccessException e) {
e.printStackTrace();
throw new RuntimeException();
}
}
public MyAtomicInteger(int value) {
this.value = value;
}
public int getValue() {
return value;
}
public boolean compareAndSwap(int update) {
while (true) {
int prev = this.value;
int next = update;
// 当前对象 内存偏移量 期望值 更新值
if (UNSAFE.compareAndSwapInt(this, VALUE_OFFSET, prev, update)) {
System.out.println("CAS成功");
return true;
}
}
}
}
参考: