- 博客(3)
- 收藏
- 关注
原创 学习笔记 Uformer: A General U-Shaped Transformer for Image Restoration (CVPR2022)
本文提出一种运用于图像恢复的Transformer,本文取名为Uformer。本文的创新主要集中在两个方面,第一点是提出了一种改善的Transformer模块,然后运用到一种类似于Unet的结构中,第二点三在框架中加入了多尺度恢复调制器。为了解决上面提到的两个问题,我们提出了一个局部增强窗口(LeWin) Transformer块,如图2(b)所示,它受益于Transformer中的自关注来捕获远程依赖关系,并且还将卷积运算符包含到Transformer中以捕获有用的局部上下文。
2024-09-09 00:57:36 1561
原创 学习笔记 Image Deblurring With Image Blurring(2023IEEE TRANSACTIONS ON IMAGE PROCESSING TIP)
基于深度学习(DL)的运动去模糊方法存在两个挑战:(1)现有方法通常在合成数据集上表现良好,但无法处理复杂的现实世界模糊,(2)对模糊的过高和过低估计将导致恢复的图像仍然模糊,甚至引入不必要的失真。本文的运动去模糊框架有。
2024-08-14 17:01:18 1960
原创 学习笔记 Comprehensive and Delicate: An Efficient Transformer for Image Restoration(CVPR2023)
图 1. 上半部分是现有 Transformers ,下半部分我们的愿景中的依赖关系捕获图示(这里我们不需要重点关注,只需要看到两个的不同,后面将详细叙述这是如何实现的)。在本文中,我们提出了一种新颖的Vision Transformers,它首先捕获超像素级的全局依赖性,然后将其转移到每个像素中。我们的目的是在注意力计算后恢复通道和空间域中的特征分布同时筛选特征,CA以自适应方式执行特征聚合和恢复,并通过网络恢复特征分布。因此,可以获得通道域和空间域中的超像素特征,并用于捕获较低维空间中的超像素依赖性。
2024-08-07 15:15:59 1467
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人