用read_csv读数据遇到分隔符问题的两种解决方式

在这里插入图片描述

用read_csv读数据遇到分隔符问题的两种解决方式

import pandas as pd

1.更改read_csv函数中的传参“sep”

1.1缺省sep参数

默认分隔符为‘,’

1.2不缺省sep参数

1.2.1要读入的文档中分隔符为一位字符

用单引号括起文本中的分隔符
例:sep = '|'

1.2.2要读入的文档中分隔符为多位字符

多位字符在python中被识别为正则式
此时可用为sep = ‘\s+’(不论多位分隔符有什么组成,比如几个空格、\r\t)
此时,python将用自己的语法分析器来对多位字符进行识别

2.利用记事本功能进行分隔符替换

因为自己在编程的时候用正则表达式出现了一些问题,故找到了另一种更改文本中分隔符,以便于设定sep参数的方法,现记录如下。

2.1利用txt中的“编辑”—>“替换”操作

在这里插入图片描述

当前分隔符为‘,’
在这里插入图片描述
替换为‘ | ’,并单击全部替换
在这里插入图片描述
替换后,分隔符为‘ | ’
在这里插入图片描述

2.2小tips

选择分隔符的时候有可能面临
“这么大空挡是几个空格?”
“这个逗号是中文的还是英文的?”

所以建议直接用鼠标拉着两个数据之间的分割区域,复制,然后粘贴填入要替换的框中。(像我这种手残眼花的人就喜欢这种方式。。。)

### 使用 Pandas 的 `read_csv` 函数读取 CSV 文件 #### 函数概述 在数据分析领域,CSV 是最常见的一种数据存储格式。Pandas 库提供了功能强大的 `read_csv()` 函数来加载 CSV 数据到 DataFrame 中[^1]。 #### 基本语法 基本调用方式如下: ```python import pandas as pd df = pd.read_csv('path_to_file') ``` 此命令会将指定路径下的 CSV 文件载入内存,并创建一个名为 `df` 的 DataFrame 对象。 #### 关键参数说明 - **filepath_or_buffer**: 表示要读取的文件名或 URL 地址字符串。支持本地文件系统路径、HTTP/HTTPS 协议链接等多种形式[^2]。 - **sep/delimiter**: 定义字段间的分隔符,默认为逗号 `,` 。如果遇到其他类型的定界符(如制表符 `\t`),则需显式指明该选项. - **header**: 指定哪一行作为列标签;默认值为0表示首行为标题行;None 则意味着无头信息,此时自动生成整数索引作为列名称[^3]. - **names**: 当 header=None 或者希望覆盖原有头部时可传入列表型新列名. - **index_col**: 设置某列为索引列,接受单个数值、序列或多层索引描述器. - **usecols**: 只导入特定几列的数据,提高效率减少资源占用。接收整数位置序号或是字符串命名两种模式. - **dtype**: 强制设定各列的数据类型,有助于加快解析速度并节省空间开销. - **skiprows/skipfooter**: 跳过不需要的部分,前者针对开头若干行后者则是结尾处的内容跳过操作. - **nrows**: 控制最大读取记录条目数量,在测试阶段非常有用. - **encoding**: 处理不同编码格式文本文件,比如 UTF-8, GBK 等等. - **na_values**: 自定义缺失值标记集合,除了 NaN 还能识别更多样式的空白字符. #### 实际应用案例 ##### 例子一:简单读取本地 CSV 文件 假设有一个位于当前目录下叫做 'data.csv' 的文件,则可以直接通过以下语句完成读取工作: ```python import pandas as pd local_df = pd.read_csv('./data.csv') print(local_df.head()) ``` ##### 例子二:从互联网获取远程 CSV 数据集 对于在线托管的服务端口提供的公开可用表格资料,只需给出完整的网址即可轻松访问: ```python url = "https://example.com/data.csv" web_df = pd.read_csv(url) print(web_df.head()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值