自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

翻译 论文翻译:Rethinking Performance Gains in Image Dehazing Networks

基于线性缩放规则[14],我们将{-T,-S,-B,-D}的初始学习率设置为{16,16,8,4}×10−4。具体而言,微型模型gUNet-T依靠10%的计算成本和32%的参数,优于DehazeFormerB,而小型模型gUNet-S仅使用5.6%的计算成本,7.4%的参数,胜过PMNet。为了简单起见,我们将每个级的gConv块数设置为{M,M,M、2M、M、M、M},将信道数设置为{N,2N,4N,8N,4N,2N、N},其中M是基本块数,N是基本信道数。,并调用生成的U-Net变体gUNet。

2023-02-27 19:33:57 331

翻译 论文翻译:LKD-Net: Large Kernel Convolution Network for Single Image Dehazing

Abstract:基于深度卷积神经网络(CNN)的单图像去噪方法已经取得了显著的成功。前面的方法致力于通过增加网络的深度和宽度来提高网络的性能。当前的方法侧重于增加卷积核大小,以通过受益于更大的感受野来增强其性能。然而,直接增加卷积核的大小会引入大量的计算开销和参数。因此,本文设计了一种新的大核卷积去重块(LKD块),它由分解深度大核卷积块(DLKCB)和信道增强前馈网络(CEFN)组成。所设计的DLKCB可以将深度方向的大核卷积拆分为较小的深度方向卷积和深度方向的扩展卷积,而不引入大量参数和计算开销。同时

2023-02-27 16:16:11 686

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除