并查集是啥

本文介绍了并查集这种数据结构,包括其概念、优势、主要操作和路径优化压缩,详细解析了查找、合并操作,并提供了核心方法的实现。通过解决LeetCode547省份数量问题,展示了并查集在解决图的连通性问题中的应用。
摘要由CSDN通过智能技术生成

一、啥是并查集

1、解释

看下维基百科的解释

并查集概念.png

啥?在说啥,看不懂?那说人话吧

通俗的说,并查集是一种数据结构,指在一些有N个元素的集合应用问题中,通常在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。用于处理一些不相交集合的合并及查询问题。

2、有啥优势

在足够多的合并和查询操作后,均摊下来单次的查询时间复杂度是O(1)。

3、作用

解决类似图的连通性问题大量使用并查集。

二、主要操作

1、初始化:把每个点所在集合初始化为其自身

通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N)。

2、查找:查找元素所在的集合,即此集合的代表节点——根节点

3、合并:将两个元素所在的集合合并为一个集合。集合小的连到集合大的

通常来说,合并之前,应先判断两个元素是否属于同一集合,这可用上面的“查找”操作实现。

三、路径优化压缩

1、思想:每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快。

2、实现:第一步,找到根结点;第二步,修改查找路径上的所有节点,将它们都指向根结点。

为啥最后均摊的时间复杂度是O(1)?

路径优化压缩是关键

因为每次在查找时,都会把此路径上所有的节点重新全部直接连到根节点上,以后再查找时都是一步到位,一步就找到了根节点,除了查找根节点以外的操作本身就是O(1),而一个路径上重新调整的操作只会执行一次,所以最后均摊下来的时间复杂度是O(1)。

关于时间复杂度O(1)的证明

并查集最早由Bernard A. Galler和Michael J. Fischer于1964年提出,但是直到Fredman 和 Saks 在 1989 年才证明了任何并查集都需要O(1)的均摊时间来完成每次操作,25年才证明完成

四、核心方法

/**
 * @author Java和算法学习:周一
 */
public static class UnionFind<V> {
   
    // 用户输入的V对应内部的Node<V>
    public HashMap<V, Node<V>> nodes;
    // Node<V>的父亲是谁
    public HashMap<Node<V>, Node<V>> parents;
    // Node<V>所在集合的大小(只有集合的代表节点<可以理解为头节点>才会放到sizeMap中)
    public HashMap<Node<V>, Integer> sizeMap;

    // 初始化时把用户给定的数据全部放到各个Map中
    public UnionFind(List<V> values) {
   
        nodes = new HashMap<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值