878. 第 N 个神奇数字(二分查找+数学)| 1819. 序列中不同最大公约数的数目(枚举+数学)

878. 第 N 个神奇数字

一个正整数如果能被 a 或 b 整除,那么它是神奇的。

给定三个整数 n , a , b ,返回第 n 个神奇的数字。因为答案可能很大,所以返回答案 对 109 + 7 取模 后的值。

示例 1:

输入:n = 1, a = 2, b = 3
输出:2

示例 2:

输入:n = 4, a = 2, b = 3
输出:6

提示:

  • 1 <= n <= 10^9
  • 2 <= a, b <= 4 * 104

思路:二分查找+数学

一看到这道题会想到264. 丑数 II - 力扣(LeetCode)的做法,用两个链表分别存a*1,a*2,a*3.....和b*1,b*2,b*3......,然后合并两个有序链表,顺带去重,最终链表的第n个元素就是结果,但是时间复杂度为O(N),n最大可取至10^9,所以肯定会超时,假定使用二分查找试试,时间复杂度为O(logN)。 

为什么使用左侧边界的二分查找?
    答:若n = 4, a = 2, b = 3,结果是6,6/2+6/3-6/6=4;
    如果是7呢?7/2+7/3-7/6=4,也是4;
    所以,选择最小的那个数,就是选择可以整除a或b的数,
    这样的数除以a,b没有余数,理所当然是满足条件的数中最小的那个。

class Solution {
public:
    int gcd(int a,int b)//辗转相除法
    {
        int c=0;
        while(a%b!=0)//若a%b==0,则b就是最大公约数
        {
            c=a%b;
            a=b;//让b作a
            b=c;//让c作b
        }
        return b;
    }
    int nthMagicalNumber(int n, int a, int b) {
        int mod=1e9+7;
        int g=gcd(a,b);//a,b的最大公约数
        int lcm=(a*b)/g;//a,b的最小公倍数=(a*b)/最大公约数
        long right=min(a,b)*(long)n;//right是二分查找的上界,在[1,right]中至少有n个神奇数字
        long left=1;
        while(left<=right)
        {
            long mid=left+(right-left)/2;
            //[1,mid]中能被a或b整除的数字的个数=能被a整除的个数+能被b整除的个数-能被能被a和b同时整除的个数
            int count=mid/a+mid/b-mid/lcm;
            if(count>=n)//左侧边界的二分查找,找到符合条件([1,mid]有n个神奇数字)的数中最小的那个
            {
                right=mid-1;
            }
            else
            {
                left=mid+1;
            }
        }
        return (right+1)%mod;
    }
};

1819. 序列中不同最大公约数的数目

给你一个由正整数组成的数组 nums 。

数字序列的 最大公约数 定义为序列中所有整数的共有约数中的最大整数。

  • 例如,序列 [4,6,16] 的最大公约数是 2 。

数组的一个 子序列 本质是一个序列,可以通过删除数组中的某些元素(或者不删除)得到。

  • 例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。

计算并返回 nums 的所有 非空 子序列中 不同 最大公约数的 数目 。

示例 1:

输入:nums = [6,10,3]
输出:5
解释:上图显示了所有的非空子序列与各自的最大公约数。
不同的最大公约数为 6 、10 、3 、2 和 1 。

示例 2:

输入:nums = [5,15,40,5,6]
输出:7

提示:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 2 * 105

 思路:枚举+数学

1、如何求三个数的最大公约数?答:先用辗转相除法求出两个数的最大公约数,然后再求第三个数和这个数的最大公约数,四个数、五个数同理。

2、枚举所有子序列的复杂度为O(2^n),一定会超时,所以反过来枚举所有可能的最大公约数,它们的范围是[1, max(nums)]。

3、如何判断枚举出的数k 存在于nums子序列的最大公约数中呢?答:一个子序列如[6,12,15],它的最大公约数是3,说明子序列中的所有数都是最大公约数3的倍数。所以,我们枚举数k 的所有倍数k,2k,3k......,判断它的倍数是否存在于nums数组中,如果存在,就把它的倍数加到子序列中,更新最大公倍数,当子序列的最大公倍数等于k 时,表明k 存在于nums子序列的最大公倍数中。

举个例子:nums=[6,12,15],所以枚举结果的范围是[1, 15]。

枚举k=1时,6k=6,子序列[6]的最大公倍数是6;12k=12,子序列[6,12]的最大公倍数是6;15k=15,子序列[6,12,15]的最大公倍数是3;3!= 1,所以1不是结果之一。

枚举k=2时,3k=6,子序列[6]的最大公倍数是6;6k=12,子序列[6,12]的最大公倍数是6;6!= 2,所以2不是结果之一。

枚举k=3时,2k=6,子序列[6]的最大公倍数是6;4k=12,子序列[6,12]的最大公倍数是6;5k=15,子序列[6,12,15]的最大公倍数是3;3== 3,所以3是结果之一。

以此类推,k=6、12、15也是结果之一,输出4。

class Solution {
public:
    int gcd(int i,int j) {
        while(i%j!=0) {
            int k=i%j;
            i=j;
            j=k;
        }
        return j;
    }
    int countDifferentSubsequenceGCDs(vector<int>& nums) {
        int maxVal=*max_element(nums.begin(),nums.end());//枚举的右边界
        vector<bool> occured(maxVal+1,false);//标志nums中的元素是否存在,功能类似unordered_set
        for(int num:nums) {
            occured[num]=true;
        }
        int ans=0;
        for(int i=1;i<=maxVal;i++)//枚举可能出现的最大公约数 
        {
            int subGcd=0;
            for(int j=i;j<=maxVal;j+=i)//枚举最大公约数j的所有倍数 
            {
                if(occured[j])//判断这个j的倍数是否存在于nums中
                {    
                    if(subGcd==0)
                        subGcd=j;
                    else
                        subGcd=gcd(subGcd,j);//更新子序列的最大公约数
                }
                if(subGcd==i)//存在子序列的最大公约数等于i,结果加一,后面不必再看 
                {
                    ans++;
                    break;
                }
            }
        }
        return ans;
    }
};

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值