题目描述
在古希腊文献中描述了传说中的亚特兰蒂斯岛。其中甚至包括该岛部分地区的地图坐标。但不幸的是,每个地图块都描述了亚特兰蒂斯的不同地区。你的朋友小明想要知道地图的总面积,所以请求你编写一个程序来计算这个数量。
输入输出格式
输入格式第一行包含一个整数 n,表示文献中记录的地图区域数量。接下来输入 n 行,每行包含四个正实数 x1,y1,x2,y2(0≤x1,y1,x2,y2≤105),表示一个地图块映射区域的左上角坐标和右下角坐标。正实数之间以空格间隔。
输出格式针对输入,打印出总探测面积 a,其中 a 是总探测面积(即所有地图块映射的矩形区域并集的面积),精确打印到小数点右侧的两位数。
输入输出样例1
输入21010202015152525.5
输出180.00
说明/提示
1≤n≤102
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 201
struct Node
{
int l,r;//线段树的左右整点
int c;//c用来记录重叠情况
double cnt,lf,rf;//
//cnt用来计算实在的长度,rf,lf分别是对应的左右真实的浮点数端点
} segTree[MAXN*3];
struct Line
{
double x,y1,y2;
int f;
} line[MAXN];
//把一段段平行于y轴的线段表示成数组 ,
//x是线段的x坐标,y1,y2线段对应的下端点和上端点的坐标
//一个矩形 ,左边的那条边f为1,右边的为-1,
//用来记录重叠情况,可以根据这个来计算,nod节点中的c
bool cmp(Line a,Line b)//sort排序的函数
{
return a.x < b.x;
}
double y[MAXN];//记录y坐标的数组
void Build(int t,int l,int r)//构造线段树
{
segTree[t].l=l;
segTree[t].r=r;
segTree[t].cnt=segTree[t].c=0;
segTree[t].lf=y[l];
segTree[t].rf=y[r];
if(l+1==r) return;
int mid=(l+r)>>1;
Build(t<<1,l,mid);
Build(t<<1|1,mid,r);//递归构造
}
void calen(int t)//计算长度
{
if(segTree[t].c>0)
{
segTree[t].cnt=segTree[t].rf-segTree[t].lf;
return;
}
if(segTree[t].l+1==segTree[t].r) segTree[t].cnt=0;
else segTree[t].cnt=segTree[t<<1].cnt+segTree[t<<1|1].cnt;
}
void update(int t,Line e)//加入线段e,后更新线段树
{
if(e.y1==segTree[t].lf&&e.y2==segTree[t].rf)
{
segTree[t].c+=e.f;
calen(t);
return;
}
if(e.y2<=segTree[t<<1].rf) update(t<<1,e);
else if(e.y1>=segTree[t<<1|1].lf) update(t<<1|1,e);
else
{
Line tmp=e;
tmp.y2=segTree[t<<1].rf;
update(t<<1,tmp);
tmp=e;
tmp.y1=segTree[t<<1|1].lf;
update(t<<1|1,tmp);
}
calen(t);
}
int main()
{
int i,n,t,iCase=0;
double x1,y1,x2,y2;
scanf("%d",&n);
iCase++;
t=1;
for(i=1; i<=n; i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
line[t].x=x1;
line[t].y1=y1;
line[t].y2=y2;
line[t].f=1;
y[t]=y1;
t++;
//构建树2
line[t].x=x2;
line[t].y1=y1;
line[t].y2=y2;
line[t].f=-1;
y[t]=y2;
t++;
}
sort(line+1,line+t,cmp);
sort(y+1,y+t);
//树节点排序
Build(1,1,t-1);
//建树
update(1,line[1]);
double res=0;
for(i=2; i<t; i++)
{
res+=segTree[1].cnt*(line[i].x-line[i-1].x);
update(1,line[i]);
}
printf("%.2f\n",res);
return 0;
}