浙江大学慕课《数据结构》学习笔记_1.3 应用实例

第一讲 基本概念


1.3 应用实例:最大子列和问题


给定N个整数的序列{ A1, A2, …, AN},求函数函数 的最大值。


算法一:

int MaxSubseqSum1( int A[], int N )
{ 
	int ThisSum, MaxSum = 0;
	int i, j, k;
	for( i = 0; i < N; i++ ) /* i是子列左端位置 */
	{ 
		for( j = i; j < N; j++ ) /* j是子列右端位置 */
		{ 
			ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和 */
			for( k = i; k <= j; k++ )
				ThisSum += A[k];
			if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
				MaxSum = ThisSum; /* 则更新结果 */
		} /* j循环结束 */
	} /* i循环结束 */
	return MaxSum;
}

T( N ) = O( N3 )


算法2:

int MaxSubseqSum2( int A[], int N )
{
	int ThisSum, MaxSum = 0;
	int i, j;
	for( i = 0; i < N; i++ ) /* i是子列左端位置 */
	{ 
		ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和 */
		for( j = i; j < N; j++ ) /* j是子列右端位置 */
		{ 
			ThisSum += A[j];
			/*对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可*/
			if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
				MaxSum = ThisSum; /* 则更新结果 */
			} /* j循环结束 */
	} /* i循环结束 */
	return MaxSum;
} 

T( N ) = O( N2 )


算法3:分而治之

在这里插入图片描述
先将整个序列分为两半,再对这两个序列再对半分,重复进行直至分到最小,再依次对两边计算序列和并更新最大序列和。
在这里插入图片描述

    int Max3( int A, int B, int C )
    { /* 返回3个整数中的最大值,注计算机会自动把满足三目表达式的看做一个整体 */
        return A > B ? A > C ? A : C : B > C ? B : C;
    }
 
    int DivideAndConquer( int List[], int left, int right )
    { /* 分治法求List[left]到List[right]的最大子列和 */
        int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
        int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
 
        int LeftBorderSum, RightBorderSum;
        int center, i;
 
        if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
            if( List[left] > 0 )  return List[left];
            else return 0;
        }
 
        /* 下面是"分"的过程 */
        center = ( left + right ) / 2; /* 找到中分点 */
        /* 递归求得两边子列的最大和,注:递归算法经过return会挑出当前递归,返回上一层递归 */
        MaxLeftSum = DivideAndConquer( List, left, center );
        MaxRightSum = DivideAndConquer( List, center+1, right );
 
        /* 下面求跨分界线的最大子列和 */
        MaxLeftBorderSum = 0; LeftBorderSum = 0;
        for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
            LeftBorderSum += List[i];
            if( LeftBorderSum > MaxLeftBorderSum )
                MaxLeftBorderSum = LeftBorderSum;
        } /* 左边扫描结束 */
 
        MaxRightBorderSum = 0; RightBorderSum = 0;
        for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
            RightBorderSum += List[i];
            if( RightBorderSum > MaxRightBorderSum )
                MaxRightBorderSum = RightBorderSum;
        } /* 右边扫描结束 */
 
        /* 下面返回"治"的结果 */
        return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
    }
 
    int MaxSubseqSum3( int List[], int N )
    { /* 保持与前2种算法相同的函数接口 */
        return DivideAndConquer( List, 0, N-1 );
    }

T ( N ) = 2 T( N/2 ) + c N , T(1) = O(1)
= 2 [2 T( N/22 ) + c N/2] + c N
= 2k O(1) + c k N 其中 N/2k = 1
= O( N log N )


算法4:在线处理

int MaxSubseqSum4( int A[], int N )
{
	int ThisSum, MaxSum;
	int i;
	ThisSum = MaxSum = 0;
	for( i = 0; i < N; i++ ) 
	{
		ThisSum += A[i]; /* 向右累加 */
		if( ThisSum > MaxSum )
			MaxSum = ThisSum; /* 发现更大和则更新当前结果 */
		else if( ThisSum < 0 ) /* 如果当前子列和为负 */
			ThisSum = 0; /* 则不可能使后面的部分和增大,抛弃之 */
	}
	return MaxSum;
} 

T( N ) = O( N )

在线”的意思是指每输入一个数据就进行即时处理,在任何一个地方中止输入,算法都能正确给出当前的解。


运行时间比较(秒)

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值