第一讲 基本概念
1.3 应用实例:最大子列和问题
给定N个整数的序列{ A1, A2, …, AN},求函数 的最大值。
算法一:
int MaxSubseqSum1( int A[], int N )
{
int ThisSum, MaxSum = 0;
int i, j, k;
for( i = 0; i < N; i++ ) /* i是子列左端位置 */
{
for( j = i; j < N; j++ ) /* j是子列右端位置 */
{
ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和 */
for( k = i; k <= j; k++ )
ThisSum += A[k];
if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
MaxSum = ThisSum; /* 则更新结果 */
} /* j循环结束 */
} /* i循环结束 */
return MaxSum;
}
T( N ) = O( N3 )
算法2:
int MaxSubseqSum2( int A[], int N )
{
int ThisSum, MaxSum = 0;
int i, j;
for( i = 0; i < N; i++ ) /* i是子列左端位置 */
{
ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和 */
for( j = i; j < N; j++ ) /* j是子列右端位置 */
{
ThisSum += A[j];
/*对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可*/
if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大 */
MaxSum = ThisSum; /* 则更新结果 */
} /* j循环结束 */
} /* i循环结束 */
return MaxSum;
}
T( N ) = O( N2 )
算法3:分而治之
先将整个序列分为两半,再对这两个序列再对半分,重复进行直至分到最小,再依次对两边计算序列和并更新最大序列和。
int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值,注计算机会自动把满足三目表达式的看做一个整体 */
return A > B ? A > C ? A : C : B > C ? B : C;
}
int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if( left == right ) { /* 递归的终止条件,子列只有1个数字 */
if( List[left] > 0 ) return List[left];
else return 0;
}
/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和,注:递归算法经过return会挑出当前递归,返回上一层递归 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
LeftBorderSum += List[i];
if( LeftBorderSum > MaxLeftBorderSum )
MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */
MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
RightBorderSum += List[i];
if( RightBorderSum > MaxRightBorderSum )
MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}
T ( N ) = 2 T( N/2 ) + c N , T(1) = O(1)
= 2 [2 T( N/22 ) + c N/2] + c N
= 2k O(1) + c k N 其中 N/2k = 1
= O( N log N )
算法4:在线处理
int MaxSubseqSum4( int A[], int N )
{
int ThisSum, MaxSum;
int i;
ThisSum = MaxSum = 0;
for( i = 0; i < N; i++ )
{
ThisSum += A[i]; /* 向右累加 */
if( ThisSum > MaxSum )
MaxSum = ThisSum; /* 发现更大和则更新当前结果 */
else if( ThisSum < 0 ) /* 如果当前子列和为负 */
ThisSum = 0; /* 则不可能使后面的部分和增大,抛弃之 */
}
return MaxSum;
}
T( N ) = O( N )
“在线”的意思是指每输入一个数据就进行即时处理,在任何一个地方中止输入,算法都能正确给出当前的解。