第二讲 线性结构
2.1 线性表及其实现
多项式的表示
一元多项式 :f(x) = a0 + a1x + ··· + an-1xn-1 + anxn
主要运算:多项式相加、相减、相乘等
多项式的关键数据:
- 多项式项数n
- 各项系数ai 及指数 i
方法1:顺序存储结构直接表示
数组各分量对应多项式各项:
a[i]:项xi的系数ai
例如f(x)=4x5-3x2+1表示成:
下标i | 0 | 1 | 2 | 3 | 4 | 5 | ······ |
---|---|---|---|---|---|---|---|
a[i] | 1 | 0 | -3 | 0 | 0 | 4 | ······ |
1 | -3x2 | 4x5 |
两个多项式相加: 两个数组对应分量相加
问题: 如何表示多项式 x+3x2000 ?
方法2:顺序存储结构表示非零项
每个非零项 aixi 涉及两个信息:系数ai和指数i可以将一个多项式看成是一个 (ai,i) 二元组的集合。
用结构数组表示: 数组分量是由系数ai、指数i组成的结构,对应一个非零项
例如: P1(x) = 9x12 + 15x8 + 3x2和P2(x) = 26x19 - 4x8 - 13x6 + 82
按指数大小有序存储
相加过程:从头开始,比较两个多项式当前对应项的指数
P1: (9,12), (15,8), (3,2)
P2: (26,19), (-4,8), (-13,6), (82,0)
P3: (26,19) (9,12) (11,8) (-13,6) (3,2) (82,0)
P3(x) = 26 x19 + 9x12 + 11x8 - 13x6 + 3x2 + 82
方法3:链表结构存储非零项
链表中每个结点存储多项式中的一个非零项,包括系数和指数两个数据域以及一个指针域
coef | expon | link |
---|
typedef struct PolyNode *Polynomial;
struct PolyNode {
int coef;
int expon;
Polynomial link;
}
例如:
P1(x) = 9x12 + 15x8 + 3x2
P2(x) = 26x19 - 4x8 - 13x6 + 82
链表存储形式为:
什么是线性表
多项式表示问题的启示:
1.同一个问题可以有不同的表示(存储)方法
2.有一类共性问题:有序线性序列的组织和管理
“线性表(Linear List)”:由同类型数据元素构成有序序列的线性结构
- 表中元素个数称为线性表的长度
- 线性表没有元素时,称为空表
- 表起始位置称表头,表结束位置称表尾
线性表的抽象数据类型描述
类型名称: 线性表(List)
数据对象集: 线性表是n(≥0)个元素构成的有序序列(a1,a2,…,an)
操作集: 线性表L∈List,整数i表示位置,元素X∈ElementType,线性表基本操作主要有:
1.List MakeEmpty():初始化一个空线性表L;
2.ElementType FindKth( int K, List L ):根据位序K,返回相应元素 ;
3.int Find( ElementType X, List L ):在线性表L中查找X的第一次出现位置;
4.void Insert( ElementType X, int i, List L):在位序i前插入一个新元素X;
5.void Delete( int i, List L ):删除指定位序i的元素;
6.int Length( List L ):返回线性表L的长度n。
线性表的顺序存储实现
利用数组的连续存储空间顺序存放线性表的各元素
typedef struct LNode *List;
struct LNode {
ElementType Data[MAXSIZE];
int Last;
} ;
struct LNode L;
List PtrL;
访问下标为 i 的元素:L.Data[i] 或 PtrL->Data[i]
线性表的长度:L.Last+1 或 PtrL->Last+1
主要操作的实现
1.初始化(建立空的顺序表)
List MakeEmpty()
{
List PtrL;
PtrL = (List )malloc( sizeof(struct LNode) );
PtrL->Last = -1;
return PtrL;
}
2.查找
int Find( ElementType X, List PtrL )
{
int i = 0;
while( i <= PtrL->Last && PtrL->Data[i]!= X )
i++;
if (i > PtrL->Last) return -1; /* 如果没找到,返回-1 */
else return i; /* 找到后返回的是存储位置 */
}
查找成功的平均比较次数为 (n+1) / 2,平均时间性能为O(n)。
3. 插入(第 i (1≤i≤n+1)个位置上插入一个值为X的新元素)
void Insert( ElementType X, int i, List PtrL )
{
int j;
if ( PtrL->Last == MAXSIZE-1 )
{/* 表空间已满,不能插入*/
printf("表满");
return;
}
if ( i < 1 || i > PtrL->Last+2)
{ /*检查插入位置的合法性*/
printf("位置不合法");
return;
}
for ( j = PtrL->Last; j >= i-1; j-- )
PtrL->Data[j+1] = PtrL->Data[j]; /*将 ai~ an倒序向后移动*/
PtrL->Data[i-1] = X; /*新元素插入*/
PtrL->Last++; /*Last仍指向最后元素*/
return;
}
平均移动次数为n/2,平均时间性能为O(n)
4. 删除(删除表的第 i (1≤i≤n)个位置上的元素)
void Delete( int i, List PtrL )
{
int j;
if( i < 1 || i > PtrL->Last+1 )
{ /*检查空表及删除位置的合法性*/
printf (“不存在第%d个元素”, i );
return ;
}
for ( j = i; j <= PtrL->Last; j++ )
PtrL->Data[j-1] = PtrL->Data[j]; /*将 ai+1~ an顺序向前移动*/
PtrL->Last--; /*Last仍指向最后元素*/
return;
}
平均移动次数为 (n-1) /2,平均时间性能为O(n)
线性表的链式存储实现
不要求逻辑上相邻的两个元素物理上也相邻;通过“链”建立起数据元素之间的逻辑关系。
• 插入、删除不需要移动数据元素,只需要修改“链”。
typedef struct LNode *List;
struct LNode
{
ElementType Data;
List Next;
};
struct Lnode L;
List PtrL;
主要操作的实现
1.求表长
int Length ( List PtrL )
{
List p = PtrL; /* p指向表的第一个结点*/
int j = 0;
while ( p )
{
p = p->Next;
j++; /* 当前p指向的是第 j 个结点*/
}
return j;
}
时间性能 O(n)
2. 查找
(1)按序号查找: FindKth
List FindKth( int K, List PtrL )
{
List p = PtrL;
int i = 1;
while (p !=NULL && i < K )
{
p = p->Next;
i++;
}
if ( i == K ) return p;
/* 找到第K个,返回指针 */
else return NULL;
/* 否则返回空 */
}
(2)按值查找: Find
List Find( ElementType X, List PtrL )
{
List p = PtrL;
while ( p!=NULL && p->Data != X )
p = p->Next;
return p;
}
平均时间性能为O(n)
3. 插入(在第 i-1(1≤i≤n+1)个结点后插入一个值为X的新结点)
(1)先构造一个新结点,用s指向;
(2)再找到链表的第 i-1个结点,用p指向;
(3)然后修改指针,插入结点 ( p之后插入新结点是 s)
思考: 修改指针的两个步骤如果交换一下,将会发生什么?
3. 插入操作实现
List Insert( ElementType X, int i, List PtrL )
{
List p, s;
if ( i == 1 )
{ /* 新结点插入在表头 */
s = (List)malloc(sizeof(struct LNode)); /*申请、填装结点*/
s->Data = X;
s->Next = PtrL;
return s; /*返回新表头指针*/
}
p = FindKth( i-1, PtrL ); /* 查找第i-1个结点 */
if ( p == NULL )
{ /* 第i-1个不存在,不能插入 */
printf("参数i错");
return NULL;
}
else
{
s = (List)malloc(sizeof(struct LNode)); /*申请、填装结点*/
s->Data = X;
s->Next = p->Next; /*新结点插入在第i-1个结点的后面*/
p->Next = s;
return PtrL;
}
}
平均查找次数为n/2,平均时间性能为O(n)
4. 删除(删除链表的第 i (1≤i≤n)个位置上的结点)
(1)先找到链表的第 i-1个结点,用p指向;
(2)再用指针s指向要被删除的结点(p的下一个结点);
(3)然后修改指针,删除s所指结点;
(4)最后释放s所指结点的空间。
思考: 操作指针的几个步骤如果随意改变,将会发生什么?
4. 删除操作实现
List Delete( int i, List PtrL )
{
List p, s;
if ( i == 1 )
{ /* 若要删除的是表的第一个结点 */
s = PtrL; /*s指向第1个结点*/
if (PtrL!=NULL) PtrL = PtrL->Next; /*从链表中删除*/
else return NULL;
free(s); /*释放被删除结点 */
return PtrL;
}
p = FindKth( i-1, PtrL ); /*查找第i-1个结点*/
if ( p == NULL )
{
printf(“第%d个结点不存在”, i-1); return NULL;
}
else if ( p->Next == NULL )
{
printf(“第%d个结点不存在”, i); return NULL;
}
else
{
s = p->Next; /*s指向第i个结点*/
p->Next = s->Next; /*从链表中删除*/
free(s); /*释放被删除结点 */
return PtrL;
}
}
平均查找次数为n/2平均时间性能为 O(n)
广义表
【例】 我们知道了一元多项式的表示,那么二元多项式又该如何表示?
比如,给定二元多项式:P(x, y) = 9x12 y2+ 4x12+15x8y3-x8y+3x2
【分析】 可以将上述二元多项式看成关于x 的一元多项式
P(x, y) = (9y2+4)x12+(15y3-y)x8+3x2,即ax12+bx8+cx2
所以,上述二元多项式可以用“复杂”链表表示为:
广义表(Generalized List)
- 广义表是线性表的推广
- 对于线性表而言, n个元素都是基本的单元素;
- 广义表中,这些元素不仅可以是单元素也可以是另一个广义表。
typedef struct GNode *GList;
struct GNode
{
int Tag; /*标志域:0表示结点是单元素,1表示结点是广义表 */
union
{ /*子表指针域Sublist与单元素数据域Data复用,即共用存储空间*/
ElementType Data;
GList SubList;
}URegion;
GList Next; /* 指向后继结点 */
};
多重链表
多重链表: 链表中的节点可能同时隶属于多个链
- 多重链表中结点的指针域会有多个,如前面例子包含了Next和SubList两个指针域;
- 但包含两个指针域的链表并不一定是多重链表,比如在双向链表不是多重链表。
多重链表有广泛的用途:基本上如树、图这样相对复杂的数据结构都可以采用多重链表方式实现存储。
【例】 矩阵可以用二维数组表示,但二维数组表示有两个缺陷:
- 一是数组的大小需要事先确定,
- 对于“稀疏矩阵 ”,将造成大量的存储空间浪费。
【分析】 采用一种典型的多重链表——十字链表来存储稀疏矩阵 - 只存储矩阵非0元素项
结点的数据域:行坐标Row、列坐标Col、数值Value - 每个结点通过两个指针域,把同行、同列串起来;
- 行指针(或称为向右指针)Right
- 列指针(或称为向下指针)Down*
- 用一个标识域Tag来区分头结点和非0元素结点:
- 头节点的标识值为“Head”,矩阵非0元素结点的标识值为“Term”。