图 最短路径问题_63

最短路径问题
描述
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入描述:
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。 (1<n<=1000, 0<m<100000, s != t)
输出描述:
输出 一行有两个数, 最短距离及其花费。
示例1
输入:
3 2
1 2 5 6
2 3 4 5
1 3
0 0

输出:
9 11
【比经典的求最短路径问题多了一个花费问题】

#include<bits/stdc++.h>
using namespace std;
//比经典的求最短路径问题多了一个花费问题
//输入不仅有每条边的长度还有花费 
//如果最短距离有多条路线,则输出花费最少的 
//无向边,路是双向的 
struct Edge{
	int to;
	int d;//长度 
	int p;//花费
	Edge(int to1,int d1,int p1):to(to1),d(d1),p(p1){}
};
struct Point{
	int number;//点的编号
	int distance;//距离
	int spend;//花费
	Point(int number1,int distance1,int spend1):number(number1),distance(distance1),spend(spend1){}
	//重载运算符,为优先队列服务
	bool operator < (const Point& p) const{
		if(distance!=p.distance){
			return p.distance<this->distance;
		}
		else{
			return p.spend<this->spend;
		}
	}
};
const int INF=INT_MAX;//定义无穷大 
const int MAXN=1000;
//图的存储结构是邻接表 
vector <Edge> graph[MAXN];

int dis[MAXN];//源点到各点的距离
int cost[MAXN];//源点到各点的花费

void Dijkstra(int s){
	priority_queue<Point>pq;
	dis[s]=0;
	cost[s]=0;
	pq.push(Point(s,dis[s],cost[s]));
	while(!pq.empty()){
		int u = pq.top().number;
		pq.pop();
		for(int i=0;i<graph[u].size();i++){
			int v = graph[u][i].to;
			int d = graph[u][i].d;
			int p = graph[u][i].p;
			//在结构体里定义的重载只是为了优先队列的排列
			//并不能在更新数值时起到一个筛选的作用
			//若最短路线有多条,则输出花费最少的,也意味着 
			//只在优先队列中加入那个花费最少的点 
			if(dis[v]>dis[u]+d || (dis[v]==dis[u]+d && cost[v]>cost[u]+p)){
				dis[v]=dis[u]+d;
				cost[v]=cost[u]+p;
				pq.push(Point(v,dis[v],cost[v]));
			}
		}
	}
}

int main(){
	int n,m,from1,to1,d1,p1,s,t;
	while(cin>>n>>m){
		memset(graph,0,sizeof(graph));//初始化图 
		//点的编号是1-n 
		fill(dis,dis+n+1,INF);//初始化距离数组 
		fill(cost,cost+n+1,INF);//初始化花费数组 
		if(n==0 && m==0){
			break;
		}
		
		while(m--){
			cin>>from1>>to1>>d1>>p1;
			//无向边 
			graph[from1].push_back(Edge(to1,d1,p1));
			graph[to1].push_back(Edge(from1,d1,p1));
		}
		cin>>s>>t;
		Dijkstra(s);
		if(dis[t]==INF){
			dis[t]=-1;
		}
		if(cost[t]==INF){
			cost[t]=-1;
		}
		cout<<dis[t]<<" "<<cost[t]<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果树上有叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值