最短路径问题
描述
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入描述:
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。 (1<n<=1000, 0<m<100000, s != t)
输出描述:
输出 一行有两个数, 最短距离及其花费。
示例1
输入:
3 2
1 2 5 6
2 3 4 5
1 3
0 0
输出:
9 11
【比经典的求最短路径问题多了一个花费问题】
#include<bits/stdc++.h>
using namespace std;
//比经典的求最短路径问题多了一个花费问题
//输入不仅有每条边的长度还有花费
//如果最短距离有多条路线,则输出花费最少的
//无向边,路是双向的
struct Edge{
int to;
int d;//长度
int p;//花费
Edge(int to1,int d1,int p1):to(to1),d(d1),p(p1){}
};
struct Point{
int number;//点的编号
int distance;//距离
int spend;//花费
Point(int number1,int distance1,int spend1):number(number1),distance(distance1),spend(spend1){}
//重载运算符,为优先队列服务
bool operator < (const Point& p) const{
if(distance!=p.distance){
return p.distance<this->distance;
}
else{
return p.spend<this->spend;
}
}
};
const int INF=INT_MAX;//定义无穷大
const int MAXN=1000;
//图的存储结构是邻接表
vector <Edge> graph[MAXN];
int dis[MAXN];//源点到各点的距离
int cost[MAXN];//源点到各点的花费
void Dijkstra(int s){
priority_queue<Point>pq;
dis[s]=0;
cost[s]=0;
pq.push(Point(s,dis[s],cost[s]));
while(!pq.empty()){
int u = pq.top().number;
pq.pop();
for(int i=0;i<graph[u].size();i++){
int v = graph[u][i].to;
int d = graph[u][i].d;
int p = graph[u][i].p;
//在结构体里定义的重载只是为了优先队列的排列
//并不能在更新数值时起到一个筛选的作用
//若最短路线有多条,则输出花费最少的,也意味着
//只在优先队列中加入那个花费最少的点
if(dis[v]>dis[u]+d || (dis[v]==dis[u]+d && cost[v]>cost[u]+p)){
dis[v]=dis[u]+d;
cost[v]=cost[u]+p;
pq.push(Point(v,dis[v],cost[v]));
}
}
}
}
int main(){
int n,m,from1,to1,d1,p1,s,t;
while(cin>>n>>m){
memset(graph,0,sizeof(graph));//初始化图
//点的编号是1-n
fill(dis,dis+n+1,INF);//初始化距离数组
fill(cost,cost+n+1,INF);//初始化花费数组
if(n==0 && m==0){
break;
}
while(m--){
cin>>from1>>to1>>d1>>p1;
//无向边
graph[from1].push_back(Edge(to1,d1,p1));
graph[to1].push_back(Edge(from1,d1,p1));
}
cin>>s>>t;
Dijkstra(s);
if(dis[t]==INF){
dis[t]=-1;
}
if(cost[t]==INF){
cost[t]=-1;
}
cout<<dis[t]<<" "<<cost[t]<<endl;
}
return 0;
}